Foundation of Cryptography, Lecture 3 Hardcore Predicates for Any One-way Function

Benny Applebaum \& Iftach Haitner, Tel Aviv University

Tel Aviv University.
November 17, 2016

Informal discussion

f is one-way \Longrightarrow predicting x from $f(x)$ is hard.

Informal discussion

f is one-way \Longrightarrow predicting x from $f(x)$ is hard.
But predicting parts of x might be easy.

Informal discussion

f is one-way \Longrightarrow predicting x from $f(x)$ is hard.
But predicting parts of x might be easy.
e.g., let f be a OWF then $g(x, w)=(f(x), w)$ is one-way

Informal discussion

f is one-way \Longrightarrow predicting x from $f(x)$ is hard.
But predicting parts of x might be easy.
e.g., let f be a OWF then $g(x, w)=(f(x), w)$ is one-way

Can we find a function of x that is totally unpredictable - looks uniform given $f(x)$?

Informal discussion

f is one-way \Longrightarrow predicting x from $f(x)$ is hard.
But predicting parts of x might be easy.
e.g., let f be a OWF then $g(x, w)=(f(x), w)$ is one-way

Can we find a function of x that is totally unpredictable - looks uniform given $f(x)$?
Such functions have many cryptographic applications

Formal definition

Definition 1 (hardcore predicates)

A poly-time computable $b:\{0,1\}^{n} \mapsto\{0,1\}$ is an hardcore predicate of $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, if

$$
\underset{x \leftarrow\{0,1\}^{n}}{\operatorname{Pr}}[\mathrm{P}(f(x))=b(x)] \leq \frac{1}{2}+\operatorname{neg}(n)
$$

for any PPT P.

Formal definition

Definition 1 (hardcore predicates)

A poly-time computable $b:\{0,1\}^{n} \mapsto\{0,1\}$ is an hardcore predicate of $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, if

$$
\underset{x \leftarrow\{0,1\}^{n}}{\operatorname{Pr}}[\mathrm{P}(f(x))=b(x)] \leq \frac{1}{2}+\operatorname{neg}(n)
$$

for any PPT P.

- Does any OWF has such a predicate?

Formal definition

Definition 1 (hardcore predicates)

A poly-time computable $b:\{0,1\}^{n} \mapsto\{0,1\}$ is an hardcore predicate of $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, if

$$
\underset{x \leftarrow\{0,1\}^{n}}{\operatorname{Pr}}[\mathrm{P}(f(x))=b(x)] \leq \frac{1}{2}+\operatorname{neg}(n)
$$

for any PPT P.

- Does any OWF has such a predicate?
- Is there a generic hardcore predicate for all one-way functions?

Formal definition

Definition 1 (hardcore predicates)

A poly-time computable $b:\{0,1\}^{n} \mapsto\{0,1\}$ is an hardcore predicate of $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, if

$$
\underset{x \leftarrow\{0,1\}^{n}}{\operatorname{Pr}}[\mathrm{P}(f(x))=b(x)] \leq \frac{1}{2}+\operatorname{neg}(n)
$$

for any PPT P.

- Does any OWF has such a predicate?
- Is there a generic hardcore predicate for all one-way functions?

Let f be a OWF and let b be a predicate, then $g(x)=(f(x), b(x))$ is one-way.

Formal definition

Definition 1 (hardcore predicates)

A poly-time computable $b:\{0,1\}^{n} \mapsto\{0,1\}$ is an hardcore predicate of $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, if

$$
\underset{x \leftarrow\{0,1\}^{n}}{\operatorname{Pr}}[\mathrm{P}(f(x))=b(x)] \leq \frac{1}{2}+\operatorname{neg}(n)
$$

for any PPT P.

- Does any OWF has such a predicate?
- Is there a generic hardcore predicate for all one-way functions?

Let f be a OWF and let b be a predicate, then $g(x)=(f(x), b(x))$ is one-way.

- Does the existence of hardcore predicate for f implies that f is one-way?

Formal definition

Definition 1 (hardcore predicates)

A poly-time computable $b:\{0,1\}^{n} \mapsto\{0,1\}$ is an hardcore predicate of $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, if

$$
\underset{x \leftarrow\{0,1\}^{n}}{\operatorname{Pr}}[\mathrm{P}(f(x))=b(x)] \leq \frac{1}{2}+\operatorname{neg}(n)
$$

for any PPT P.

- Does any OWF has such a predicate?
- Is there a generic hardcore predicate for all one-way functions?

Let f be a OWF and let b be a predicate, then $g(x)=(f(x), b(x))$ is one-way.

- Does the existence of hardcore predicate for f implies that f is one-way?

Consider $f(x, y)=x$, then $b(x, y)=y$ is a hardcore predicate for f

Formal definition

Definition 1 (hardcore predicates)

A poly-time computable $b:\{0,1\}^{n} \mapsto\{0,1\}$ is an hardcore predicate of $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, if

$$
\underset{x \leftarrow\{0,1\}^{n}}{\operatorname{Pr}}[\mathrm{P}(f(x))=b(x)] \leq \frac{1}{2}+\operatorname{neg}(n)
$$

for any PPT P.

- Does any OWF has such a predicate?
- Is there a generic hardcore predicate for all one-way functions?

Let f be a OWF and let b be a predicate, then $g(x)=(f(x), b(x))$ is one-way.

- Does the existence of hardcore predicate for f implies that f is one-way?

Consider $f(x, y)=x$, then $b(x, y)=y$ is a hardcore predicate for f Answer to above is positive, in case f is one-to-one

Weak hardcore predicates

Weak hardcore predicates

For $x \in\{0,1\}^{n}$ and $i \in[n]$, let x_{i} be the $i^{\prime \prime}$ th bit of x.

Weak hardcore predicates

For $x \in\{0,1\}^{n}$ and $i \in[n]$, let x_{i} be the $i^{\prime \prime}$ th bit of x.

Theorem 2

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, define $g:\{0,1\}^{n} \times[n] \mapsto\{0,1\}^{n} \times[n]$ by

$$
g(x, i)=f(x), i
$$

Assuming f is one way, then

$$
\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}, i \leftarrow[n]}\left[\mathrm{A}(f(x), i)=x_{i}\right] \leq 1-1 / 2 n
$$

for any PPT A.

Weak hardcore predicates

For $x \in\{0,1\}^{n}$ and $i \in[n]$, let x_{i} be the $i^{\prime \prime}$ th bit of x.

Theorem 2

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, define $g:\{0,1\}^{n} \times[n] \mapsto\{0,1\}^{n} \times[n]$ by

$$
g(x, i)=f(x), i
$$

Assuming f is one way, then

$$
\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}, i \leftarrow[n]}\left[\mathrm{A}(f(x), i)=x_{i}\right] \leq 1-1 / 2 n
$$

for any PPT A.
Proof: ?

Weak hardcore predicates

For $x \in\{0,1\}^{n}$ and $i \in[n]$, let x_{i} be the $i^{\prime \prime}$ th bit of x.

Theorem 2

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, define $g:\{0,1\}^{n} \times[n] \mapsto\{0,1\}^{n} \times[n]$ by

$$
g(x, i)=f(x), i
$$

Assuming f is one way, then

$$
\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}, i \leftarrow[n]}\left[\mathrm{A}(f(x), i)=x_{i}\right] \leq 1-1 / 2 n
$$

for any PPT A.
Proof: ?
We can now construct an hardcore predicate "for" f :

1. Construct a weak hardcore predicate for g (i.e., $b(x, i):=x_{i}$).
2. Amplify it into a (strong) hardcore predicate for g^{t} via parallel repetition

Weak hardcore predicates

For $x \in\{0,1\}^{n}$ and $i \in[n]$, let x_{i} be the $i^{\prime \prime}$ th bit of x.

Theorem 2

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, define $g:\{0,1\}^{n} \times[n] \mapsto\{0,1\}^{n} \times[n]$ by

$$
g(x, i)=f(x), i
$$

Assuming f is one way, then

$$
\operatorname{Pr}_{x \leftarrow\{0,1\}^{n}, i \leftarrow[n]}\left[\mathrm{A}(f(x), i)=x_{i}\right] \leq 1-1 / 2 n
$$

for any PPT A.
Proof: ?
We can now construct an hardcore predicate "for" f :

1. Construct a weak hardcore predicate for g (i.e., $b(x, i):=x_{i}$).
2. Amplify it into a (strong) hardcore predicate for g^{t} via parallel repetition

The resulting predicate is not for f but for (the one-way function) $g^{t} \ldots$

The Goldreich-Levin Hardcore predicate

For $x, r \in\{0,1\}^{n}$, let $\langle x, r\rangle_{2}:=\left(\sum_{i=1}^{n} x_{i} \cdot r_{i}\right) \bmod 2=\bigoplus_{i=1}^{n} x_{i} \cdot r_{i}$.

The Goldreich-Levin Hardcore predicate

For $x, r \in\{0,1\}^{n}$, let $\langle x, r\rangle_{2}:=\left(\sum_{i=1}^{n} x_{i} \cdot r_{i}\right) \bmod 2=\bigoplus_{i=1}^{n} x_{i} \cdot r_{i}$.

Theorem 3 (Goldreich-Levin)

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, define $g:\{0,1\}^{n} \times\{0,1\}^{n} \mapsto\{0,1\}^{n} \times\{0,1\}^{n}$ as $g(x, r)=(f(x), r)$.

If f is one-way, then $b(x, r):=\langle x, r\rangle_{2}$ is an hardcore predicate of g.

The Goldreich-Levin Hardcore predicate

For $x, r \in\{0,1\}^{n}$, let $\langle x, r\rangle_{2}:=\left(\sum_{i=1}^{n} x_{i} \cdot r_{i}\right) \bmod 2=\bigoplus_{i=1}^{n} x_{i} \cdot r_{i}$.

Theorem 3 (Goldreich-Levin)

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, define $g:\{0,1\}^{n} \times\{0,1\}^{n} \mapsto\{0,1\}^{n} \times\{0,1\}^{n}$ as $g(x, r)=(f(x), r)$.

If f is one-way, then $b(x, r):=\langle x, r\rangle_{2}$ is an hardcore predicate of g.

- Note that if f is one-to-one, then so is g.

The Goldreich-Levin Hardcore predicate

For $x, r \in\{0,1\}^{n}$, let $\langle x, r\rangle_{2}:=\left(\sum_{i=1}^{n} x_{i} \cdot r_{i}\right) \bmod 2=\bigoplus_{i=1}^{n} x_{i} \cdot r_{i}$.

Theorem 3 (Goldreich-Levin)

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, define $g:\{0,1\}^{n} \times\{0,1\}^{n} \mapsto\{0,1\}^{n} \times\{0,1\}^{n}$ as $g(x, r)=(f(x), r)$.
If f is one-way, then $b(x, r):=\langle x, r\rangle_{2}$ is an hardcore predicate of g.

- Note that if f is one-to-one, then so is g.
- A slight cheat, b is defined for g and not for the original OWF f

The Goldreich-Levin Hardcore predicate

For $x, r \in\{0,1\}^{n}$, let $\langle x, r\rangle_{2}:=\left(\sum_{i=1}^{n} x_{i} \cdot r_{i}\right) \bmod 2=\bigoplus_{i=1}^{n} x_{i} \cdot r_{i}$.

Theorem 3 (Goldreich-Levin)

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, define $g:\{0,1\}^{n} \times\{0,1\}^{n} \mapsto\{0,1\}^{n} \times\{0,1\}^{n}$ as $g(x, r)=(f(x), r)$.
If f is one-way, then $b(x, r):=\langle x, r\rangle_{2}$ is an hardcore predicate of g.

- Note that if f is one-to-one, then so is g.
- A slight cheat, b is defined for g and not for the original OWF f

The Goldreich-Levin Hardcore predicate

For $x, r \in\{0,1\}^{n}$, let $\langle x, r\rangle_{2}:=\left(\sum_{i=1}^{n} x_{i} \cdot r_{i}\right) \bmod 2=\bigoplus_{i=1}^{n} x_{i} \cdot r_{i}$.

Theorem 3 (Goldreich-Levin)

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, define $g:\{0,1\}^{n} \times\{0,1\}^{n} \mapsto\{0,1\}^{n} \times\{0,1\}^{n}$ as $g(x, r)=(f(x), r)$.
If f is one-way, then $b(x, r):=\langle x, r\rangle_{2}$ is an hardcore predicate of g.

- Note that if f is one-to-one, then so is g.
- A slight cheat, b is defined for g and not for the original OWF f

Proof by reduction: a PPT A for predicting $b(x, r)$ "too well" from $(f(x), r)$, implies an inverter for f

Section 1

Proving GL - The information theoretic case

Min entropy

Definition 4 (min-entropy)

The min entropy of a random variable (or distribution) X, is defined as

$$
\mathrm{H}_{\infty}(X):=\min _{y \in \operatorname{Supp}(X)} \log \frac{1}{\operatorname{Pr}_{X}[y]} .
$$

Min entropy

Definition 4 (min-entropy)

The min entropy of a random variable (or distribution) X, is defined as

$$
\mathrm{H}_{\infty}(X):=\min _{y \in \operatorname{Supp}(X)} \log \frac{1}{\operatorname{Pr}_{X}[y]}
$$

Examples:

- Z is uniform over a set of size 2^{k}.
- $Z=\left.X\right|_{f(X)=y}$, where $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ is 2^{k} to 1 , $y \in f\left(\{0,1\}^{n}\right):=\left\{f(x): x \in\{0,1\}^{n}\right\}$ and X is uniform over $\{0,1\}^{n}$. Equivalently, $X \leftarrow f^{-1}(y)$.

In both cases, $\mathrm{H}_{\infty}(Z)=k$.

Pairwise independent hashing

Definition 5 (pairwise independent function family)

A function family $\mathcal{H}=\left\{h:\{0,1\}^{n} \mapsto\{0,1\}^{m}\right\}$ is pairwise independent, if \forall $x \neq x^{\prime} \in\{0,1\}^{n}$ and $y, y^{\prime} \in\{0,1\}^{m}$, it holds that
$\left.\operatorname{Pr}_{h \leftarrow \mathcal{H}}\left[h(x)=y \wedge h\left(x^{\prime}\right)=y^{\prime}\right)\right]=2^{-2 m}$.

Pairwise independent hashing

Definition 5 (pairwise independent function family)
A function family $\mathcal{H}=\left\{h:\{0,1\}^{n} \mapsto\{0,1\}^{m}\right\}$ is pairwise independent, if \forall $x \neq x^{\prime} \in\{0,1\}^{n}$ and $y, y^{\prime} \in\{0,1\}^{m}$, it holds that $\left.\operatorname{Pr}_{h \leftarrow \mathcal{H}}\left[h(x)=y \wedge h\left(x^{\prime}\right)=y^{\prime}\right)\right]=2^{-2 m}$.

Lemma 6 (leftover hash lemma)

Let X be a rv over $\{0,1\}^{n}$ with $\mathrm{H}_{\infty}(X) \geq k$ and let $\mathcal{H}=\left\{h:\{0,1\}^{n} \mapsto\{0,1\}^{m}\right\}$ be pairwise independent, then

$$
\mathrm{SD}\left((H, H(X)),\left(H, U_{m}\right)\right) \leq 2^{(m-k-2)) / 2}
$$

where H is uniformly distributed over \mathcal{H} and U_{m} is uniformly distributed over $\{0,1\}^{m}$.

See proof here, page 13.

Efficient function families

Definition 7 (efficient function families)

An ensemble of function families $\mathcal{F}=\left\{\mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ is efficient, if
Samplable. Exists PPT that given 1^{n}, outputs (the description of) a uniform element in \mathcal{F}_{n}.
Efficient. Exists poly-time algorithm that given $x \in\{0,1\}^{n}$ and (a description of) $f \in \mathcal{F}_{n}$, outputs $f(x)$.

Proving GL for compressing functions

Definition 8

Function $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ is $d(n)$ regular, if $\left|f^{-1}(y)\right|=d(n)$ for every $y \in f\left(\{0,1\}^{n}\right)$.

Proving GL for compressing functions

Definition 8

Function $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ is $d(n)$ regular, if $\left|f^{-1}(y)\right|=d(n)$ for every $y \in f\left(\{0,1\}^{n}\right)$.

Lemma 9

Let $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ be a $d(n) \in 2^{\omega(\log n)}$ regular function, and let $\mathcal{H}=\left\{\mathcal{H}_{n}\right\}$ be an efficient family of Boolean pairwise independent functions over $\{0,1\}^{n}$. Define $g:\{0,1\}^{n} \times \mathcal{H}_{n} \mapsto\{0,1\}^{n} \times \mathcal{H}_{n}$ as

$$
g(x, h)=(f(x), h),
$$

then $b(x, h)=h(x)$ is an hardcore predicate of g.

Proving GL for compressing functions

Definition 8

Function $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ is $d(n)$ regular, if $\left|f^{-1}(y)\right|=d(n)$ for every $y \in f\left(\{0,1\}^{n}\right)$.

Lemma 9

Let $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ be a $d(n) \in 2^{\omega(\log n)}$ regular function, and let $\mathcal{H}=\left\{\mathcal{H}_{n}\right\}$ be an efficient family of Boolean pairwise independent functions over $\{0,1\}^{n}$. Define $g:\{0,1\}^{n} \times \mathcal{H}_{n} \mapsto\{0,1\}^{n} \times \mathcal{H}_{n}$ as

$$
g(x, h)=(f(x), h),
$$

then $b(x, h)=h(x)$ is an hardcore predicate of g.
How does it relate to Goldreich-Levin?

Proving GL for compressing functions

Definition 8

Function $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ is $d(n)$ regular, if $\left|f^{-1}(y)\right|=d(n)$ for every $y \in f\left(\{0,1\}^{n}\right)$.

Lemma 9

Let $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ be a $d(n) \in 2^{\omega(\log n)}$ regular function, and let $\mathcal{H}=\left\{\mathcal{H}_{n}\right\}$ be an efficient family of Boolean pairwise independent functions over $\{0,1\}^{n}$. Define $g:\{0,1\}^{n} \times \mathcal{H}_{n} \mapsto\{0,1\}^{n} \times \mathcal{H}_{n}$ as

$$
g(x, h)=(f(x), h),
$$

then $b(x, h)=h(x)$ is an hardcore predicate of g.
How does it relate to Goldreich-Levin?
$\left\{\mathcal{H}_{n}=\left\{b_{r}(\cdot)=b(r, \cdot)\right\}_{\left.r \in\{0,1\}^{n}\right\}}\right.$ is (almost) pairwise independent.

Proving Lemma 9

The lemma follows by the next claim (?)

Claim 10

SD $\left(\left(f\left(U_{n}\right), H, H\left(U_{n}\right)\right),\left(f\left(U_{n}\right), H, U_{1}\right)\right)=\operatorname{neg}(n)$, where $H=H_{n}$ is uniformly distributed over \mathcal{H}_{n}.

Proving Lemma 9

The lemma follows by the next claim (?)

Claim 10

SD $\left(\left(f\left(U_{n}\right), H, H\left(U_{n}\right)\right),\left(f\left(U_{n}\right), H, U_{1}\right)\right)=\operatorname{neg}(n)$, where $H=H_{n}$ is uniformly distributed over \mathcal{H}_{n}.

Proving the claim. For $y \in f\left(\{0,1\}^{n}\right)$, let X_{y} be uniformly distributed over $f^{-1}(y):=\left\{x \in\{0,1\}^{n}: f(x)=y\right\}$.

Proving Lemma 9

The lemma follows by the next claim (?)

Claim 10

SD $\left(\left(f\left(U_{n}\right), H, H\left(U_{n}\right)\right),\left(f\left(U_{n}\right), H, U_{1}\right)\right)=\operatorname{neg}(n)$, where $H=H_{n}$ is uniformly distributed over \mathcal{H}_{n}.

Proving the claim. For $y \in f\left(\{0,1\}^{n}\right)$, let X_{y} be uniformly distributed over $f^{-1}(y):=\left\{x \in\{0,1\}^{n}: f(x)=y\right\}$. Compute

$$
\begin{aligned}
& \operatorname{SD}\left(\left(f\left(U_{n}\right), H, H\left(U_{n}\right)\right),\left(f\left(U_{n}\right), H, U_{1}\right)\right) \\
& =\underset{y \leftarrow f\left(U_{n}\right)}{\mathrm{E}}\left[\mathrm{SD}\left(\left(f\left(U_{n}\right), H,\left.H\left(U_{n}\right)\right|_{f\left(U_{n}\right)=y},\left.\left(f\left(U_{n}\right), H, U_{1}\right)\right|_{f\left(U_{n}\right)=y}\right)\right]\right.
\end{aligned}
$$

Proving Lemma 9

The lemma follows by the next claim (?)

Claim 10

$\operatorname{SD}\left(\left(f\left(U_{n}\right), H, H\left(U_{n}\right)\right),\left(f\left(U_{n}\right), H, U_{1}\right)\right)=\operatorname{neg}(n)$, where $H=H_{n}$ is uniformly distributed over \mathcal{H}_{n}.

Proving the claim. For $y \in f\left(\{0,1\}^{n}\right)$, let X_{y} be uniformly distributed over $f^{-1}(y):=\left\{x \in\{0,1\}^{n}: f(x)=y\right\}$. Compute

$$
\begin{aligned}
& \operatorname{SD}\left(\left(f\left(U_{n}\right), H, H\left(U_{n}\right)\right),\left(f\left(U_{n}\right), H, U_{1}\right)\right) \\
& =\underset{y \leftarrow f\left(U_{n}\right)}{\mathrm{E}}\left[\operatorname{SD}\left(\left(f\left(U_{n}\right), H,\left.H\left(U_{n}\right)\right|_{f\left(U_{n}\right)=y},\left.\left(f\left(U_{n}\right), H, U_{1}\right)\right|_{f\left(U_{n}\right)=y}\right)\right]\right. \\
& =\underset{y \leftarrow f\left(U_{n}\right)}{\mathrm{E}}\left[\operatorname{SD}\left(\left(y, H, H\left(X_{y}\right)\right),\left(y, H, U_{1}\right)\right)\right]
\end{aligned}
$$

Proving Lemma 9

The lemma follows by the next claim (?)

Claim 10

$\operatorname{SD}\left(\left(f\left(U_{n}\right), H, H\left(U_{n}\right)\right),\left(f\left(U_{n}\right), H, U_{1}\right)\right)=\operatorname{neg}(n)$, where $H=H_{n}$ is uniformly distributed over \mathcal{H}_{n}.

Proving the claim. For $y \in f\left(\{0,1\}^{n}\right)$, let X_{y} be uniformly distributed over $f^{-1}(y):=\left\{x \in\{0,1\}^{n}: f(x)=y\right\}$. Compute

$$
\begin{aligned}
& \operatorname{SD}\left(\left(f\left(U_{n}\right), H, H\left(U_{n}\right)\right),\left(f\left(U_{n}\right), H, U_{1}\right)\right) \\
& =\underset{y \leftarrow f\left(U_{n}\right)}{\mathrm{E}}\left[\operatorname { S D } \left(\left(f\left(U_{n}\right), H,\left.H\left(U_{n}\right)\right|_{f\left(U_{n}\right)=y},\left.\left(f\left(U_{n}\right), H, U_{1}\right)\right|_{\left.f\left(U_{n}\right)=y\right)}\right]\right.\right. \\
& =\underset{y \leftarrow f\left(U_{n}\right)}{\mathrm{E}}\left[\mathrm{SD}\left(\left(y, H, H\left(X_{y}\right)\right),\left(y, H, U_{1}\right)\right)\right] \\
& \leq \max _{y \in f\left(\{0,1\}^{n}\right)} \operatorname{SD}\left(\left(y, H, H\left(X_{y}\right)\right),\left(y, H, U_{1}\right)\right)
\end{aligned}
$$

Proving Lemma 9

The lemma follows by the next claim (?)

Claim 10

$\operatorname{SD}\left(\left(f\left(U_{n}\right), H, H\left(U_{n}\right)\right),\left(f\left(U_{n}\right), H, U_{1}\right)\right)=\operatorname{neg}(n)$, where $H=H_{n}$ is uniformly distributed over \mathcal{H}_{n}.

Proving the claim. For $y \in f\left(\{0,1\}^{n}\right)$, let X_{y} be uniformly distributed over $f^{-1}(y):=\left\{x \in\{0,1\}^{n}: f(x)=y\right\}$. Compute

$$
\begin{aligned}
& \mathrm{SD}\left(\left(f\left(U_{n}\right), H, H\left(U_{n}\right)\right),\left(f\left(U_{n}\right), H, U_{1}\right)\right) \\
& =\underset{y \leftarrow f\left(U_{n}\right)}{\mathrm{E}}\left[\operatorname { S D } \left(\left(f\left(U_{n}\right), H,\left.H\left(U_{n}\right)\right|_{f\left(U_{n}\right)=y},\left.\left(f\left(U_{n}\right), H, U_{1}\right)\right|_{\left.\left.f\left(U_{n}\right)=y\right)\right]}\right.\right.\right. \\
& ={\underset{y \leftarrow f\left(U_{n}\right)}{\mathrm{E}}\left[\mathrm{SD}\left(\left(y, H, H\left(X_{y}\right)\right),\left(y, H, U_{1}\right)\right)\right]}_{\leq \max _{y \in f\left(\{0,1\}^{n}\right)} \operatorname{SD}\left(\left(y, H, H\left(X_{y}\right)\right),\left(y, H, U_{1}\right)\right)}^{=\max _{y \in f\left(\{0,1\}^{n}\right)} \operatorname{SD}\left(\left(H, H\left(X_{y}\right)\right),\left(H, U_{1}\right)\right)}
\end{aligned}
$$

Proving Lemma 9, cont.

Since $H_{\infty}\left(X_{y}\right)=\log (d(n))$ for any $y \in f\left(\{0,1\}^{n}\right)$,

Proving Lemma 9, cont.

Since $\mathrm{H}_{\infty}\left(X_{y}\right)=\log (d(n))$ for any $y \in f\left(\{0,1\}^{n}\right)$, the leftover hash lemma (Lemma 6) yields that

$$
\begin{aligned}
\operatorname{SD}\left(\left(H, H\left(X_{y}\right)\right),\left(H, U_{1}\right)\right) & \leq 2^{\left.\left(1-\mathrm{H}_{\infty}\left(X_{y}\right)-2\right)\right) / 2} \\
& =2^{(1-\log (d(n))) / 2}=\operatorname{neg}(n)
\end{aligned}
$$

Section 2

Proving GL - The Computational Case

Proving Goldreich-Levin Theorem

Theorem 11 (Goldreich-Levin)

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, define $g:\{0,1\}^{n} \times\{0,1\}^{n} \mapsto\{0,1\}^{n} \times\{0,1\}^{n}$ as $g(x, r)=(f(x), r)$.

If f is one-way, then $b(x, r):=\langle x, r\rangle_{2}$ is an hardcore predicate of g.

Proving Goldreich-Levin Theorem

Theorem 11 (Goldreich-Levin)

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, define $g:\{0,1\}^{n} \times\{0,1\}^{n} \mapsto\{0,1\}^{n} \times\{0,1\}^{n}$ as $g(x, r)=(f(x), r)$.
If f is one-way, then $b(x, r):=\langle x, r\rangle_{2}$ is an hardcore predicate of g.
Proof: Assume \exists PPT A, $p \in$ poly and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{A}\left(g\left(U_{n}, R_{n}\right)\right)=b\left(U_{n}, R_{n}\right)\right] \geq \frac{1}{2}+\frac{1}{p(n)}, \tag{1}
\end{equation*}
$$

for any $n \in \mathcal{I}$, where U_{n} and R_{n} are uniformly (and independently) distributed over $\{0,1\}^{n}$.

Proving Goldreich-Levin Theorem

Theorem 11 (Goldreich-Levin)

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, define $g:\{0,1\}^{n} \times\{0,1\}^{n} \mapsto\{0,1\}^{n} \times\{0,1\}^{n}$ as $g(x, r)=(f(x), r)$.
If f is one-way, then $b(x, r):=\langle x, r\rangle_{2}$ is an hardcore predicate of g.
Proof: Assume \exists PPT A, $p \in$ poly and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{A}\left(g\left(U_{n}, R_{n}\right)\right)=b\left(U_{n}, R_{n}\right)\right] \geq \frac{1}{2}+\frac{1}{p(n)}, \tag{1}
\end{equation*}
$$

for any $n \in \mathcal{I}$, where U_{n} and R_{n} are uniformly (and independently) distributed over $\{0,1\}^{n}$.

We show \exists PPT B and $q \in$ poly with

$$
\begin{equation*}
\operatorname{Pr}_{y \leftarrow f\left(U_{n}\right)}\left[\mathrm{B}(y) \in f^{-1}(y)\right] \geq \frac{1}{q(n)}, \tag{2}
\end{equation*}
$$

for every $n \in \mathcal{I}$.

Proving Goldreich-Levin Theorem

Theorem 11 (Goldreich-Levin)

For $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$, define $g:\{0,1\}^{n} \times\{0,1\}^{n} \mapsto\{0,1\}^{n} \times\{0,1\}^{n}$ as $g(x, r)=(f(x), r)$.
If f is one-way, then $b(x, r):=\langle x, r\rangle_{2}$ is an hardcore predicate of g.
Proof: Assume \exists PPT A, $p \in$ poly and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{A}\left(g\left(U_{n}, R_{n}\right)\right)=b\left(U_{n}, R_{n}\right)\right] \geq \frac{1}{2}+\frac{1}{p(n)}, \tag{1}
\end{equation*}
$$

for any $n \in \mathcal{I}$, where U_{n} and R_{n} are uniformly (and independently) distributed over $\{0,1\}^{n}$.

We show \exists PPT B and $q \in$ poly with

$$
\begin{equation*}
\operatorname{Pr}_{y \leftarrow f\left(U_{n}\right)}\left[\mathrm{B}(y) \in f^{-1}(y)\right] \geq \frac{1}{q(n)}, \tag{2}
\end{equation*}
$$

for every $n \in \mathcal{I}$. In the following fix $n \in \mathcal{I}$.

Focusing on a good set

Claim 12

There exists a set $\mathcal{S} \subseteq\{0,1\}^{n}$ with

1. $\frac{|\mathcal{S}|}{2^{n}} \geq \frac{1}{2 p(n)}$, and
2. $\left.\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right]\right] \geq \frac{1}{2}+\frac{1}{2 p(n)}, \forall x \in S$.

Focusing on a good set

Claim 12

There exists a set $\mathcal{S} \subseteq\{0,1\}^{n}$ with

1. $\frac{|\mathcal{S}|}{2^{n}} \geq \frac{1}{2 p(n)}$, and
2. $\left.\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right]\right] \geq \frac{1}{2}+\frac{1}{2 p(n)}, \forall x \in S$.

Proof:

Focusing on a good set

Claim 12

There exists a set $\mathcal{S} \subseteq\{0,1\}^{n}$ with

1. $\frac{|\mathcal{S}|}{2^{n}} \geq \frac{1}{2 p(n)}$, and
2. $\left.\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right]\right] \geq \frac{1}{2}+\frac{1}{2 p(n)}, \forall x \in S$.

Proof: Let $\mathcal{S}:=\left\{x \in\{0,1\}^{n}: \operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq \frac{1}{2}+\frac{1}{2 p(n)}\right\}$.

Focusing on a good set

Claim 12

There exists a set $\mathcal{S} \subseteq\{0,1\}^{n}$ with

1. $\frac{|\mathcal{S}|}{2^{n}} \geq \frac{1}{2 p(n)}$, and
2. $\left.\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right]\right] \geq \frac{1}{2}+\frac{1}{2 p(n)}, \forall x \in S$.

Proof: Let $\mathcal{S}:=\left\{x \in\{0,1\}^{n}: \operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq \frac{1}{2}+\frac{1}{2 p(n)}\right\}$.

$$
\operatorname{Pr}\left[\mathrm{A}\left(g\left(U_{n}, R_{n}\right)\right)=b\left(U_{n}, R_{n}\right)\right] \leq \operatorname{Pr}\left[U_{n} \notin \mathcal{S}\right] \cdot\left(\frac{1}{2}+\frac{1}{2 p(n)}\right)+\operatorname{Pr}\left[U_{n} \in \mathcal{S}\right]
$$

Focusing on a good set

Claim 12

There exists a set $\mathcal{S} \subseteq\{0,1\}^{n}$ with

1. $\frac{|\mathcal{S}|}{2^{n}} \geq \frac{1}{2 p(n)}$, and
2. $\left.\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right]\right] \geq \frac{1}{2}+\frac{1}{2 p(n)}, \forall x \in S$.

Proof: Let $\mathcal{S}:=\left\{x \in\{0,1\}^{n}: \operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq \frac{1}{2}+\frac{1}{2 p(n)}\right\}$.

$$
\begin{aligned}
\operatorname{Pr}\left[\mathrm{A}\left(g\left(U_{n}, R_{n}\right)\right)=b\left(U_{n}, R_{n}\right)\right] & \leq \operatorname{Pr}\left[U_{n} \notin \mathcal{S}\right] \cdot\left(\frac{1}{2}+\frac{1}{2 p(n)}\right)+\operatorname{Pr}\left[U_{n} \in \mathcal{S}\right] \\
& \leq\left(\frac{1}{2}+\frac{1}{2 p(n)}\right)+\operatorname{Pr}\left[U_{n} \in \mathcal{S}\right] \square
\end{aligned}
$$

Focusing on a good set

Claim 12

There exists a set $\mathcal{S} \subseteq\{0,1\}^{n}$ with

1. $\frac{|\mathcal{S}|}{2^{n}} \geq \frac{1}{2 p(n)}$, and
2. $\left.\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right]\right] \geq \frac{1}{2}+\frac{1}{2 p(n)}, \forall x \in S$.

$$
\begin{aligned}
& \text { Proof: Let } \mathcal{S}:=\left\{x \in\{0,1\}^{n}: \operatorname{Pr}\left[\operatorname{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq \frac{1}{2}+\frac{1}{2 p(n)}\right\} . \\
& \begin{aligned}
\operatorname{Pr}\left[A\left(g\left(U_{n}, R_{n}\right)\right)=b\left(U_{n}, R_{n}\right)\right] & \leq \operatorname{Pr}\left[U_{n} \notin \mathcal{S}\right] \cdot\left(\frac{1}{2}+\frac{1}{2 p(n)}\right)+\operatorname{Pr}\left[U_{n} \in \mathcal{S}\right] \\
& \leq\left(\frac{1}{2}+\frac{1}{2 p(n)}\right)+\operatorname{Pr}\left[U_{n} \in \mathcal{S}\right] \square
\end{aligned}
\end{aligned}
$$

We conclude the theorem's proof showing exist $q \in$ poly and PPT B :

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{B}(f(x)) \in f^{-1}(f(x)) \geq \frac{1}{q(n)},\right. \tag{3}
\end{equation*}
$$

for every $x \in \mathcal{S}$.

Focusing on a good set

Claim 12

There exists a set $\mathcal{S} \subseteq\{0,1\}^{n}$ with

1. $\frac{|\mathcal{S}|}{2^{n}} \geq \frac{1}{2 p(n)}$, and
2. $\left.\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right]\right] \geq \frac{1}{2}+\frac{1}{2 p(n)}, \forall x \in S$.

$$
\begin{aligned}
& \text { Proof: Let } \mathcal{S}:=\left\{x \in\{0,1\}^{n}: \operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq \frac{1}{2}+\frac{1}{2 p(n)}\right\} \text {. } \\
& \operatorname{Pr}\left[\mathrm{A}\left(g\left(U_{n}, R_{n}\right)\right)=b\left(U_{n}, R_{n}\right)\right] \leq \operatorname{Pr}\left[U_{n} \notin \mathcal{S}\right] \cdot\left(\frac{1}{2}+\frac{1}{2 p(n)}\right)+\operatorname{Pr}\left[U_{n} \in \mathcal{S}\right] \\
& \leq\left(\frac{1}{2}+\frac{1}{2 p(n)}\right)+\operatorname{Pr}\left[U_{n} \in \mathcal{S}\right] \square
\end{aligned}
$$

We conclude the theorem's proof showing exist $q \in$ poly and PPT B :

$$
\begin{equation*}
\operatorname{Pr}\left[\mathrm{B}(f(x)) \in f^{-1}(f(x)) \geq \frac{1}{q(n)},\right. \tag{3}
\end{equation*}
$$

for every $x \in \mathcal{S}$. In the following we fix $x \in \mathcal{S}$.

The Perfect Case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right]=1
$$

The Perfect Case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right]=1
$$

In particular, $\mathrm{A}\left(f(x), e^{i}\right)=b\left(x, e^{i}\right)$ for every $i \in[n]$, where $e^{i}=(\underbrace{0, \ldots, 0}_{i-1}, 1, \underbrace{0, \ldots, 0}_{n-i})$.

The Perfect Case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right]=1
$$

In particular, $\mathrm{A}\left(f(x), e^{i}\right)=b\left(x, e^{i}\right)$ for every $i \in[n]$, where $e^{i}=(\underbrace{0, \ldots, 0}_{i-1}, 1, \underbrace{0, \ldots, 0}_{n-i})$.

Hence, $x_{i}=\left\langle x, e^{i}\right\rangle_{2}$

The Perfect Case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right]=1
$$

In particular, $\mathrm{A}\left(f(x), e^{i}\right)=b\left(x, e^{i}\right)$ for every $i \in[n]$, where $e^{i}=(\underbrace{0, \ldots, 0}_{i-1}, 1, \underbrace{0, \ldots, 0}_{n-i})$.

Hence, $x_{i}=\left\langle x, e^{i}\right\rangle_{2}=b\left(x, e^{i}\right)=\mathrm{A}\left(f(x), e^{i}\right)$

The Perfect Case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right]=1
$$

In particular, $\mathrm{A}\left(f(x), e^{i}\right)=b\left(x, e^{i}\right)$ for every $i \in[n]$, where $e^{i}=(\underbrace{0, \ldots, 0}_{i-1}, 1, \underbrace{0, \ldots, 0}_{n-i})$.

Hence, $x_{i}=\left\langle x, e^{i}\right\rangle_{2}=b\left(x, e^{i}\right)=\mathrm{A}\left(f(x), e^{i}\right)$

Algorithm 13 (Inverter B on input y)

Return $\left(\mathrm{A}\left(y, e^{1}\right), \ldots, \mathrm{A}\left(y, e^{n}\right)\right)$.

Easy case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq 1-\operatorname{neg}(n)
$$

Easy case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq 1-\operatorname{neg}(n)
$$

$A(f(x), r)=b(x, r)$

- $A(f(x), r) \neq b(x, r)$

Easy case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq 1-\operatorname{neg}(n)
$$

$$
A(f(x), r)=b(x, r)
$$

$$
A(f(x), r) \neq b(x, r)
$$

Easy case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq 1-\operatorname{neg}(n)
$$

$$
A(f(x), r)=b(x, r)
$$

$$
A(f(x), r) \neq b(x, r)
$$

Easy case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq 1-\operatorname{neg}(n)
$$

$$
A(f(x), r)=b(x, r)
$$

$$
A(f(x), r) \neq b(x, r)
$$

Easy case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq 1-\operatorname{neg}(n)
$$

$A(f(x), r)=b(x, r)$
$A(f(x), r) \neq b(x, r)$

Fact 14

1. $b(x, w) \oplus b(x, y)=b(x, w \oplus y)$ for every $w, w, y \in\{0,1\}^{n}$.

Easy case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq 1-\operatorname{neg}(n)
$$

Fact 14

1. $b(x, w) \oplus b(x, y)=b(x, w \oplus y)$ for every $w, w, y \in\{0,1\}^{n}$.
2. $\forall r \in\{0,1\}^{n}$, the $r v\left(R_{n} \oplus r\right)$ is uniformly distributed over $\{0,1\}^{n}$.

Easy case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq 1-\operatorname{neg}(n)
$$

$A(f(x), r)=b(x, r)$
$A(f(x), r) \neq b(x, r)$

Fact 14

1. $b(x, w) \oplus b(x, y)=b(x, w \oplus y)$ for every $w, w, y \in\{0,1\}^{n}$.
2. $\forall r \in\{0,1\}^{n}$, the $r v\left(R_{n} \oplus r\right)$ is uniformly distributed over $\{0,1\}^{n}$.

Hence, $\forall i \in[n]$:

1. $x_{i}=b\left(x, e^{i}\right)=b(x, r) \oplus b\left(x, r \oplus e^{i}\right)$ for every $r \in\{0,1\}^{n}$

Easy case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq 1-\operatorname{neg}(n)
$$

- $A(f(x), r) \neq b(x, r)$

Fact 14

1. $b(x, w) \oplus b(x, y)=b(x, w \oplus y)$ for every $w, w, y \in\{0,1\}^{n}$.
2. $\forall r \in\{0,1\}^{n}$, the $r v\left(R_{n} \oplus r\right)$ is uniformly distributed over $\{0,1\}^{n}$.

Hence, $\forall i \in[n]$:

1. $x_{i}=b\left(x, e^{i}\right)=b(x, r) \oplus b\left(x, r \oplus e^{i}\right)$ for every $r \in\{0,1\}^{n}$
2. $\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right) \wedge \mathrm{A}\left(f(x), R_{n} \oplus e^{i}\right)=b\left(x, R_{n} \oplus e^{i}\right)\right] \geq 1-\operatorname{neg}(n)$

Easy case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq 1-\operatorname{neg}(n)
$$

- $A(f(x), r) \neq b(x, r)$

Fact 14

1. $b(x, w) \oplus b(x, y)=b(x, w \oplus y)$ for every $w, w, y \in\{0,1\}^{n}$.
2. $\forall r \in\{0,1\}^{n}$, the $r v\left(R_{n} \oplus r\right)$ is uniformly distributed over $\{0,1\}^{n}$.

Hence, $\forall i \in[n]$:

1. $x_{i}=b\left(x, e^{i}\right)=b(x, r) \oplus b\left(x, r \oplus e^{i}\right)$ for every $r \in\{0,1\}^{n}$
2. $\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right) \wedge \mathrm{A}\left(f(x), R_{n} \oplus e^{i}\right)=b\left(x, R_{n} \oplus e^{i}\right)\right] \geq 1-\operatorname{neg}(n)$

Algorithm 15 (Inverter B on input y)

Return $\left.\left(\mathrm{A}\left(y, R_{n}\right) \oplus \mathrm{A}\left(y, R_{n} \oplus e^{1}\right)\right), \ldots, \mathrm{A}\left(y, R_{n}\right) \oplus \mathrm{A}\left(y, R_{n} \oplus e^{n}\right)\right)$.

Proving Fact 14

1. For $w, w, y \in\{0,1\}^{n}$:

$$
\begin{aligned}
b(x, y) \oplus b(x, w) & =\left(\bigoplus_{i=1^{n}} x_{i} \cdot y_{i}\right) \oplus\left(\bigoplus_{i=1^{n}} x_{i} \cdot w_{i}\right) \\
& =\bigoplus_{i=1^{n}} x_{i} \cdot\left(y_{i} \oplus w_{i}\right) \\
& =b(x, y \oplus w)
\end{aligned}
$$

Proving Fact 14

1. For $w, w, y \in\{0,1\}^{n}$:

$$
\begin{aligned}
b(x, y) \oplus b(x, w) & =\left(\bigoplus_{i=1^{n}} x_{i} \cdot y_{i}\right) \oplus\left(\bigoplus_{i=1^{n}} x_{i} \cdot w_{i}\right) \\
& =\bigoplus_{i=1^{n}} x_{i} \cdot\left(y_{i} \oplus w_{i}\right) \\
& =b(x, y \oplus w)
\end{aligned}
$$

2. For $r, y \in\{0,1\}^{n}$:

$$
\operatorname{Pr}\left[R_{n} \oplus r=y\right]=\operatorname{Pr}\left[R_{n}=y \oplus r\right]=2^{-n}
$$

Intermediate Case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq \frac{3}{4}+\frac{1}{q(n)}
$$

Intermediate Case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq \frac{3}{4}+\frac{1}{q(n)}
$$

For any $i \in[n]$

$$
\begin{aligned}
& \operatorname{Pr}\left[A\left(f(x), R_{n}\right) \oplus A\left(f(x), R_{n} \oplus e^{i}\right)=x_{i}\right] \\
& \geq \quad \operatorname{Pr}\left[A\left(f(x), R_{n}\right)=b\left(x, R_{n}\right) \wedge A\left(f(x), R_{n} \oplus e^{i}\right)=b\left(x, R_{n} \oplus e^{i}\right)\right]
\end{aligned}
$$

Intermediate Case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq \frac{3}{4}+\frac{1}{q(n)}
$$

For any $i \in[n]$

$$
\begin{aligned}
& \operatorname{Pr}\left[A\left(f(x), R_{n}\right) \oplus A\left(f(x), R_{n} \oplus e^{i}\right)=x_{i}\right] \\
& \geq \quad \operatorname{Pr}\left[A\left(f(x), R_{n}\right)=b\left(x, R_{n}\right) \wedge A\left(f(x), R_{n} \oplus e^{i}\right)=b\left(x, R_{n} \oplus e^{i}\right)\right] \\
& \geq \quad 1-\left(1-\left(\frac{3}{4}+\frac{1}{q(n)}\right)\right)-\left(1-\left(\frac{3}{4}+\frac{1}{q(n)}\right)\right)
\end{aligned}
$$

Intermediate Case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq \frac{3}{4}+\frac{1}{q(n)}
$$

For any $i \in[n]$

$$
\begin{aligned}
& \operatorname{Pr}\left[A\left(f(x), R_{n}\right) \oplus A\left(f(x), R_{n} \oplus e^{i}\right)=x_{i}\right] \\
& \geq \quad \operatorname{Pr}\left[A\left(f(x), R_{n}\right)=b\left(x, R_{n}\right) \wedge A\left(f(x), R_{n} \oplus e^{i}\right)=b\left(x, R_{n} \oplus e^{i}\right)\right] \\
& \geq \quad 1-\left(1-\left(\frac{3}{4}+\frac{1}{q(n)}\right)\right)-\left(1-\left(\frac{3}{4}+\frac{1}{q(n)}\right)\right)=\frac{1}{2}+\frac{2}{q(n)}
\end{aligned}
$$

Intermediate Case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq \frac{3}{4}+\frac{1}{q(n)}
$$

For any $i \in[n]$

$$
\begin{aligned}
& \operatorname{Pr}\left[A\left(f(x), R_{n}\right) \oplus A\left(f(x), R_{n} \oplus e^{i}\right)=x_{i}\right] \\
& \geq \quad \operatorname{Pr}\left[A\left(f(x), R_{n}\right)=b\left(x, R_{n}\right) \wedge A\left(f(x), R_{n} \oplus e^{i}\right)=b\left(x, R_{n} \oplus e^{i}\right)\right] \\
& \geq \quad 1-\left(1-\left(\frac{3}{4}+\frac{1}{q(n)}\right)\right)-\left(1-\left(\frac{3}{4}+\frac{1}{q(n)}\right)\right)=\frac{1}{2}+\frac{2}{q(n)}
\end{aligned}
$$

Algorithm 16 (Inverter B on input $y \in\{0,1\}^{n}$)

1. For every $i \in[n]$
1.1 Sample $r^{1}, \ldots, r^{v} \in\{0,1\}^{n}$ uniformly at random
1.2 Let $m_{i}=\operatorname{maj}_{j \in[v]}\left\{\left(A\left(y, r^{j}\right) \oplus A\left(y, r^{j} \oplus e^{i}\right)\right\}\right.$
2. Output $\left(m_{1}, \ldots, m_{n}\right)$

B's Success Provability

The following claim holds for "large enough" $v=v(n) \in \operatorname{poly}(n)$.

B's Success Provability

The following claim holds for "large enough" $v=v(n) \in \operatorname{poly}(n)$.

Claim 17

For every $i \in[n]$, it holds that $\operatorname{Pr}\left[m_{i}=x_{i}\right] \geq 1-\operatorname{neg}(n)$.

B's Success Provability

The following claim holds for "large enough" $v=v(n) \in \operatorname{poly}(n)$.

Claim 17

For every $i \in[n]$, it holds that $\operatorname{Pr}\left[m_{i}=x_{i}\right] \geq 1-\operatorname{neg}(n)$.
Proof: For $j \in[v]$, let the indicator $r v W^{j}$ be 1 , iff $A\left(f(x), r^{j}\right) \oplus A\left(f(x), r^{j} \oplus e^{i}\right)=x_{i}$.

B's Success Provability

The following claim holds for "large enough" $v=v(n) \in \operatorname{poly}(n)$.

Claim 17

For every $i \in[n]$, it holds that $\operatorname{Pr}\left[m_{i}=x_{i}\right] \geq 1-\operatorname{neg}(n)$.
Proof: For $j \in[v]$, let the indicator $r v W^{j}$ be 1 , iff $A\left(f(x), r^{j}\right) \oplus A\left(f(x), r^{j} \oplus e^{i}\right)=x_{i}$.
We want to lowerbound $\operatorname{Pr}\left[\sum_{j=1}^{v} W^{j}>\frac{v}{2}\right]$.

B's Success Provability

The following claim holds for "large enough" $v=v(n) \in \operatorname{poly}(n)$.

Claim 17

For every $i \in[n]$, it holds that $\operatorname{Pr}\left[m_{i}=x_{i}\right] \geq 1-\operatorname{neg}(n)$.
Proof: For $j \in[v]$, let the indicator $r v W^{j}$ be 1 , iff $A\left(f(x), r^{j}\right) \oplus A\left(f(x), r^{j} \oplus e^{i}\right)=x_{i}$.
We want to lowerbound $\operatorname{Pr}\left[\sum_{j=1}^{v} W^{j}>\frac{v}{2}\right]$.

- The W^{j} are iids and $\mathrm{E}\left[W^{j}\right] \geq \frac{1}{2}+\frac{2}{q(n)}$ for every $j \in[v]$

B's Success Provability

The following claim holds for "large enough" $v=v(n) \in \operatorname{poly}(n)$.

Claim 17

For every $i \in[n]$, it holds that $\operatorname{Pr}\left[m_{i}=x_{i}\right] \geq 1-\operatorname{neg}(n)$.
Proof: For $j \in[v]$, let the indicator rv W^{j} be 1 , iff
$A\left(f(x), r^{j}\right) \oplus A\left(f(x), r^{j} \oplus e^{i}\right)=x_{i}$.
We want to lowerbound $\operatorname{Pr}\left[\sum_{j=1}^{v} W^{j}>\frac{v}{2}\right]$.

- The W^{j} are iids and $\mathrm{E}\left[W^{j}\right] \geq \frac{1}{2}+\frac{2}{q(n)}$ for every $j \in[v]$

Lemma 18 (Hoeffding's inequality)

Let X^{1}, \ldots, X^{\vee} be iids over $[0,1]$ with expectation μ. Then,
$\operatorname{Pr}\left[\left|\frac{\sum_{j=i}^{v} X^{j}}{v}-\mu\right| \geq \varepsilon\right] \leq 2 \cdot \exp \left(-2 \varepsilon^{2} v\right)$ for every $\varepsilon>0$.

B's Success Provability

The following claim holds for "large enough" $v=v(n) \in \operatorname{poly}(n)$.

Claim 17

For every $i \in[n]$, it holds that $\operatorname{Pr}\left[m_{i}=x_{i}\right] \geq 1-\operatorname{neg}(n)$.
Proof: For $j \in[v]$, let the indicator $r v W^{j}$ be 1 , iff
$A\left(f(x), r^{j}\right) \oplus A\left(f(x), r^{j} \oplus e^{i}\right)=x_{i}$.
We want to lowerbound $\operatorname{Pr}\left[\sum_{j=1}^{v} W^{j}>\frac{v}{2}\right]$.

- The W^{j} are iids and $\mathrm{E}\left[W^{j}\right] \geq \frac{1}{2}+\frac{2}{q(n)}$ for every $j \in[v]$

Lemma 18 (Hoeffding's inequality)

Let X^{1}, \ldots, X^{\vee} be iids over $[0,1]$ with expectation μ. Then,
$\operatorname{Pr}\left[\left|\frac{\sum_{j=i}^{v} X^{j}}{v}-\mu\right| \geq \varepsilon\right] \leq 2 \cdot \exp \left(-2 \varepsilon^{2} v\right)$ for every $\varepsilon>0$.
We complete the proof taking $X^{j}=W^{j}, \varepsilon=1 / 4 q(n)$ and $v \in \omega\left(\log (n) \cdot q(n)^{2}\right)$.

The actual (hard) case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq \frac{1}{2}+\frac{1}{q(n)}
$$

The actual (hard) case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq \frac{1}{2}+\frac{1}{q(n)}
$$

- What goes wrong?

The actual (hard) case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq \frac{1}{2}+\frac{1}{q(n)}
$$

- What goes wrong?
$\operatorname{Pr}\left[A\left(f(x), R_{n}\right) \oplus A\left(f(x), R_{n} \oplus e^{i}\right)=x_{i}\right] \geq \frac{2}{q(n)}$

The actual (hard) case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq \frac{1}{2}+\frac{1}{q(n)}
$$

- What goes wrong?
$\operatorname{Pr}\left[A\left(f(x), R_{n}\right) \oplus A\left(f(x), R_{n} \oplus e^{i}\right)=x_{i}\right] \geq \frac{2}{q(n)}$
- Hence, using a random guess does better than using A :-<

The actual (hard) case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq \frac{1}{2}+\frac{1}{q(n)}
$$

- What goes wrong?
$\operatorname{Pr}\left[A\left(f(x), R_{n}\right) \oplus A\left(f(x), R_{n} \oplus e^{i}\right)=x_{i}\right] \geq \frac{2}{q(n)}$
- Hence, using a random guess does better than using A :-<
- Idea: guess the values of $\left\{b\left(x, r^{1}\right), \ldots, b\left(x, r^{\nu}\right)\right\}$ (instead of calling $\left\{\mathrm{A}\left(f(x), r^{1}\right), \ldots, \mathrm{A}\left(f(x), r^{\nu}\right)\right\}$)

The actual (hard) case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq \frac{1}{2}+\frac{1}{q(n)}
$$

- What goes wrong?
$\operatorname{Pr}\left[A\left(f(x), R_{n}\right) \oplus A\left(f(x), R_{n} \oplus e^{i}\right)=x_{i}\right] \geq \frac{2}{q(n)}$
- Hence, using a random guess does better than using A :--
- Idea: guess the values of $\left\{b\left(x, r^{1}\right), \ldots, b\left(x, r^{\nu}\right)\right\}$ (instead of calling $\left\{\mathrm{A}\left(f(x), r^{1}\right), \ldots, \mathrm{A}\left(f(x), r^{\nu}\right)\right\}$)
Problem: negligible success probability

The actual (hard) case

$$
\operatorname{Pr}\left[\mathrm{A}\left(f(x), R_{n}\right)=b\left(x, R_{n}\right)\right] \geq \frac{1}{2}+\frac{1}{q(n)}
$$

- What goes wrong?
$\operatorname{Pr}\left[A\left(f(x), R_{n}\right) \oplus A\left(f(x), R_{n} \oplus e^{i}\right)=x_{i}\right] \geq \frac{2}{q(n)}$
- Hence, using a random guess does better than using $A:-<$
- Idea: guess the values of $\left\{b\left(x, r^{1}\right), \ldots, b\left(x, r^{\nu}\right)\right\}$ (instead of calling $\left\{\mathrm{A}\left(f(x), r^{1}\right), \ldots, \mathrm{A}\left(f(x), r^{\nu}\right)\right\}$)
Problem: negligible success probability
Solution: choose the samples in a correlated manner

Algorithm B

- Fix $\ell=\ell(n)($ will be $O(\log n))$ and set $v=2^{\ell}-1$.

Algorithm B

- Fix $\ell=\ell(n)($ will be $O(\log n))$ and set $v=2^{\ell}-1$.

Algorithm B

- Fix $\ell=\ell(n)$ (will be $O(\log n)$) and set $v=2^{\ell}-1$.
- In the following $\mathcal{L} \subseteq[\ell]$ stands for a non empty choice

Algorithm B

- Fix $\ell=\ell(n)$ (will be $O(\log n)$) and set $v=2^{\ell}-1$.
- In the following $\mathcal{L} \subseteq[\ell]$ stands for a non empty choice

Algorithm B

- Fix $\ell=\ell(n)$ (will be $O(\log n)$) and set $v=2^{\ell}-1$.
- In the following $\mathcal{L} \subseteq[\ell]$ stands for a non empty choice

Algorithm 19 (Inverter B on $y=f(x) \in\{0,1\}^{n}$)

1. Sample uniformly (and independently) $t^{1}, \ldots, t^{\ell} \in\{0,1\}^{n}$
2. Guess the value of $\left\{b\left(x, t^{i}\right)\right\}_{i \in[\ell]}$
3. For all $\mathcal{L} \subseteq[\ell]$: set $r^{\mathcal{L}}=\bigoplus_{i \in \mathcal{L}} t^{i}$ and compute $b\left(x, r^{\mathcal{L}}\right)=\bigoplus_{i \in \mathcal{L}} b\left(x, t^{i}\right)$.
4. For all $i \in[n]$, let $m_{i}=\operatorname{maj}_{\mathcal{L} \subseteq[\ell]}\left\{\mathrm{A}\left(f(x), r^{\mathcal{L}} \oplus e^{i}\right) \oplus b\left(x, r^{\mathcal{L}}\right)\right\}$
5. Output $\left(m_{1}, \ldots, m_{n}\right)$

Algorithm B

- Fix $\ell=\ell(n)$ (will be $O(\log n)$) and set $v=2^{\ell}-1$.
- In the following $\mathcal{L} \subseteq[\ell]$ stands for a non empty choice

Algorithm 19 (Inverter B on $y=f(x) \in\{0,1\}^{n}$)

1. Sample uniformly (and independently) $t^{1}, \ldots, t^{\ell} \in\{0,1\}^{n}$
2. Guess the value of $\left\{b\left(x, t^{i}\right)\right\}_{i \in[\ell]}$
3. For all $\mathcal{L} \subseteq[\ell]$: set $r^{\mathcal{L}}=\bigoplus_{i \in \mathcal{L}} t^{i}$ and compute $b\left(x, r^{\mathcal{L}}\right)=\bigoplus_{i \in \mathcal{L}} b\left(x, t^{i}\right)$.
4. For all $i \in[n]$, let $m_{i}=\operatorname{maj}_{\mathcal{L} \subseteq[\ell]}\left\{\mathrm{A}\left(f(x), r^{\mathcal{L}} \oplus e^{i}\right) \oplus b\left(x, r^{\mathcal{L}}\right)\right\}$
5. Output $\left(m_{1}, \ldots, m_{n}\right)$

- Fix $i \in[n]$, and let $W^{\mathcal{L}}$ be 1 iff $\mathrm{A}\left(f(x), r^{\mathcal{L}} \oplus e^{i}\right) \oplus b\left(x, r^{\mathcal{L}}\right)=x_{i}$.

Algorithm B

- Fix $\ell=\ell(n)$ (will be $O(\log n)$) and set $v=2^{\ell}-1$.
- In the following $\mathcal{L} \subseteq[\ell]$ stands for a non empty choice

Algorithm 19 (Inverter B on $y=f(x) \in\{0,1\}^{n}$)

1. Sample uniformly (and independently) $t^{1}, \ldots, t^{\ell} \in\{0,1\}^{n}$
2. Guess the value of $\left\{b\left(x, t^{i}\right)\right\}_{i \in[\ell]}$
3. For all $\mathcal{L} \subseteq[\ell]$: set $r^{\mathcal{L}}=\bigoplus_{i \in \mathcal{L}} t^{i}$ and compute $b\left(x, r^{\mathcal{L}}\right)=\bigoplus_{i \in \mathcal{L}} b\left(x, t^{i}\right)$.
4. For all $i \in[n]$, let $m_{i}=\operatorname{maj}_{\mathcal{L} \subseteq[\ell]}\left\{\mathrm{A}\left(f(x), r^{\mathcal{L}} \oplus e^{i}\right) \oplus b\left(x, r^{\mathcal{L}}\right)\right\}$
5. Output $\left(m_{1}, \ldots, m_{n}\right)$

- Fix $i \in[n]$, and let $W^{\mathcal{L}}$ be 1 iff $\mathrm{A}\left(f(x), r^{\mathcal{L}} \oplus e^{i}\right) \oplus b\left(x, r^{\mathcal{L}}\right)=x_{i}$.
- We want to lowerbound $\operatorname{Pr}\left[\sum_{\mathcal{L} \subseteq[\ell]} W^{\mathcal{L}}>\frac{v}{2}\right]$

Algorithm B

- Fix $\ell=\ell(n)$ (will be $O(\log n)$) and set $v=2^{\ell}-1$.
- In the following $\mathcal{L} \subseteq[\ell]$ stands for a non empty choice

Algorithm 19 (Inverter B on $y=f(x) \in\{0,1\}^{n}$)

1. Sample uniformly (and independently) $t^{1}, \ldots, t^{\ell} \in\{0,1\}^{n}$
2. Guess the value of $\left\{b\left(x, t^{i}\right)\right\}_{i \in[\ell]}$
3. For all $\mathcal{L} \subseteq[\ell]$: set $r^{\mathcal{L}}=\bigoplus_{i \in \mathcal{L}} t^{i}$ and compute $b\left(x, r^{\mathcal{L}}\right)=\bigoplus_{i \in \mathcal{L}} b\left(x, t^{i}\right)$.
4. For all $i \in[n]$, let $m_{i}=\operatorname{maj}_{\mathcal{L} \subseteq[\ell]}\left\{\mathrm{A}\left(f(x), r^{\mathcal{L}} \oplus e^{i}\right) \oplus b\left(x, r^{\mathcal{L}}\right)\right\}$
5. Output $\left(m_{1}, \ldots, m_{n}\right)$

- Fix $i \in[n]$, and let $W^{\mathcal{L}}$ be 1 iff $\mathrm{A}\left(f(x), r^{\mathcal{L}} \oplus e^{i}\right) \oplus b\left(x, r^{\mathcal{L}}\right)=x_{i}$.
- We want to lowerbound $\operatorname{Pr}\left[\sum_{\mathcal{L} \subseteq[\ell]} W^{\mathcal{L}}>\frac{v}{2}\right]$
- Problem: the $W^{\mathcal{L}}$'s are dependent!

Analyzing B's success probability

1. Let T^{1}, \ldots, T^{ℓ} be iid and uniform over $\{0,1\}^{n}$.
2. For $\mathcal{L} \subseteq[\ell]$, let $R^{\mathcal{L}}=\bigoplus_{i \in \mathcal{L}} T^{i}$.

Analyzing B's success probability

1. Let T^{1}, \ldots, T^{ℓ} be iid and uniform over $\{0,1\}^{n}$.
2. For $\mathcal{L} \subseteq[\ell]$, let $R^{\mathcal{L}}=\bigoplus_{i \in \mathcal{L}} T^{i}$.

Claim 20

1. $\forall \mathcal{L} \subseteq[\ell], R^{\mathcal{L}}$ is uniformly distributed over $\{0,1\}^{n}$.
2. $\forall w, w^{\prime} \in\{0,1\}^{n}$ and $\mathcal{L} \neq \mathcal{L}^{\prime} \subseteq[\ell]$, it holds that $\operatorname{Pr}\left[R^{\mathcal{L}}=w \wedge R^{\mathcal{L}^{\prime}}=w^{\prime}\right]=\operatorname{Pr}\left[R^{\mathcal{L}}=w\right] \cdot \operatorname{Pr}\left[R^{\mathcal{L}^{\prime}}=w^{\prime}\right]=2^{-2 n}$.

Analyzing B's success probability

1. Let T^{1}, \ldots, T^{ℓ} be iid and uniform over $\{0,1\}^{n}$.
2. For $\mathcal{L} \subseteq[\ell]$, let $R^{\mathcal{L}}=\bigoplus_{i \in \mathcal{L}} T^{i}$.

Claim 20

1. $\forall \mathcal{L} \subseteq[\ell], R^{\mathcal{L}}$ is uniformly distributed over $\{0,1\}^{n}$.
2. $\forall w, w^{\prime} \in\{0,1\}^{n}$ and $\mathcal{L} \neq \mathcal{L}^{\prime} \subseteq[\ell]$, it holds that

$$
\operatorname{Pr}\left[R^{\mathcal{L}}=w \wedge R^{\mathcal{L}^{\prime}}=w^{\prime}\right]=\operatorname{Pr}\left[R^{\mathcal{L}}=w\right] \cdot \operatorname{Pr}\left[R^{\mathcal{L}^{\prime}}=w^{\prime}\right]=2^{-2 n} .
$$

Proof:

Analyzing B's success probability

1. Let T^{1}, \ldots, T^{ℓ} be iid and uniform over $\{0,1\}^{n}$.
2. For $\mathcal{L} \subseteq[\ell]$, let $R^{\mathcal{L}}=\bigoplus_{i \in \mathcal{L}} T^{i}$.

Claim 20

1. $\forall \mathcal{L} \subseteq[\ell], R^{\mathcal{L}}$ is uniformly distributed over $\{0,1\}^{n}$.
2. $\forall w, w^{\prime} \in\{0,1\}^{n}$ and $\mathcal{L} \neq \mathcal{L}^{\prime} \subseteq[\ell]$, it holds that

$$
\operatorname{Pr}\left[R^{\mathcal{L}}=w \wedge R^{\mathcal{L}^{\prime}}=w^{\prime}\right]=\operatorname{Pr}\left[R^{\mathcal{L}}=w\right] \cdot \operatorname{Pr}\left[R^{\mathcal{L}^{\prime}}=w^{\prime}\right]=2^{-2 n} .
$$

Proof: (1) is clear,

Analyzing B's success probability

1. Let T^{1}, \ldots, T^{ℓ} be iid and uniform over $\{0,1\}^{n}$.
2. For $\mathcal{L} \subseteq[\ell]$, let $R^{\mathcal{L}}=\bigoplus_{i \in \mathcal{L}} T^{i}$.

Claim 20

1. $\forall \mathcal{L} \subseteq[\ell], R^{\mathcal{L}}$ is uniformly distributed over $\{0,1\}^{n}$.
2. $\forall w, w^{\prime} \in\{0,1\}^{n}$ and $\mathcal{L} \neq \mathcal{L}^{\prime} \subseteq[\ell]$, it holds that

$$
\operatorname{Pr}\left[R^{\mathcal{L}}=w \wedge R^{\mathcal{L}^{\prime}}=w^{\prime}\right]=\operatorname{Pr}\left[R^{\mathcal{L}}=w\right] \cdot \operatorname{Pr}\left[R^{\mathcal{L}^{\prime}}=w^{\prime}\right]=2^{-2 n} .
$$

Proof: (1) is clear, we prove (2) in the next slide.

Proving Fact 20(2)

Assume wlg. that $1 \in\left(\mathcal{L}^{\prime} \backslash \mathcal{L}\right)$.

Proving Fact 20(2)

Assume wlg. that $1 \in\left(\mathcal{L}^{\prime} \backslash \mathcal{L}\right)$.

$$
\begin{aligned}
& \operatorname{Pr}\left[R^{\mathcal{L}}=w \wedge R^{\mathcal{L}^{\prime}}=w^{\prime}\right] \\
& =\underset{\left(t^{2}, \ldots, t^{\ell}\right) \leftarrow\{0,1\}^{(\ell-1) n}}{E}\left[\operatorname{Pr}\left[R^{\mathcal{L}}=w \wedge R^{\mathcal{L}^{\prime}}=w^{\prime} \mid\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right]\right]
\end{aligned}
$$

Proving Fact 20(2)

Assume wig. that $1 \in\left(\mathcal{L}^{\prime} \backslash \mathcal{L}\right)$.

$$
\begin{aligned}
& \operatorname{Pr}\left[R^{\mathcal{L}}=w \wedge R^{\mathcal{L}^{\prime}}=w^{\prime}\right] \\
& =t_{\left(t^{2}, \ldots, t^{\ell}\right) \leftarrow\{0,1\}^{(\ell-1) n}}\left[\operatorname{Pr}\left[R^{\mathcal{L}}=w \wedge R^{\mathcal{L}^{\prime}}=w^{\prime} \mid\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right]\right] \\
& =\sum_{\left(t^{2}, \ldots, t^{\ell}\right):\left(\oplus_{i \in \mathcal{L}} t^{\prime}\right)=w} \operatorname{Pr}\left[\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right] \\
& \quad \cdot \operatorname{Pr}\left[R^{\mathcal{L}^{\prime}}=w^{\prime} \mid\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right]
\end{aligned}
$$

Proving Fact 20(2)

Assume wig. that $1 \in\left(\mathcal{L}^{\prime} \backslash \mathcal{L}\right)$.

$$
\begin{aligned}
& \operatorname{Pr}\left[R^{\mathcal{L}}=w \wedge R^{\mathcal{L}^{\prime}}=w^{\prime}\right] \\
& =t_{\left(t^{2}, \ldots, t^{\ell}\right) \leftarrow\{0,1\}^{(\ell-1) n}}^{\mathrm{E}}\left[\operatorname{Pr}\left[R^{\mathcal{L}}=w \wedge R^{\mathcal{L}^{\prime}}=w^{\prime} \mid\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right]\right] \\
& =\sum_{\left(t^{2}, \ldots, t^{\ell}\right):\left(\oplus_{i \in \mathcal{L}}\right.} \operatorname{Pr}\left[\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right] \\
& \quad \cdot \operatorname{Pr}\left[R^{\mathcal{L}^{\prime}}=w^{\prime} \mid\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right] \\
& =\sum_{\left(t^{2}, \ldots, t^{\ell}\right):\left(\oplus_{i \in \mathcal{L}} t^{\prime}\right)=w} \operatorname{Pr}\left[\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right] \cdot 2^{-n}
\end{aligned}
$$

Proving Fact 20(2)

Assume wig. that $1 \in\left(\mathcal{L}^{\prime} \backslash \mathcal{L}\right)$.

$$
\begin{aligned}
\operatorname{Pr} & {\left[R^{\mathcal{L}}=w \wedge R^{\mathcal{L}^{\prime}}=w^{\prime}\right] } \\
= & t^{\left.t^{2}, \ldots, t^{\ell}\right) \leftarrow\{0,1\}^{(\ell-1) n}} \mathrm{E} \\
= & \left.\operatorname{Pr}\left[R^{\mathcal{L}}=w \wedge R^{\mathcal{L}^{\prime}}=w^{\prime} \mid\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right]\right] \\
& \left.\sum_{\left(t^{2}, \ldots, t^{\ell}\right):} \operatorname{Pr}\left[\left(T_{i \in \mathcal{L}} t^{\prime}\right), \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right] \\
& \cdot \operatorname{Pr}\left[R^{\mathcal{L}^{\prime}}=w^{\prime} \mid\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right] \\
= & \sum_{\left(t^{2}, \ldots, t^{\ell}\right):\left(\oplus_{i \in \mathcal{L}}\right.} \operatorname{Pr}\left[\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right] \cdot 2^{-n} \\
= & 2^{-n} \cdot 2^{-n}
\end{aligned}
$$

Proving Fact 20(2)

Assume wig. that $1 \in\left(\mathcal{L}^{\prime} \backslash \mathcal{L}\right)$.

$$
\begin{aligned}
& \operatorname{Pr}\left[R^{\mathcal{L}}=w \wedge R^{\mathcal{L}^{\prime}}=w^{\prime}\right] \\
&= t^{\left.t^{2}, \ldots, t^{\ell}\right) \leftarrow\{0,1\}^{(\ell-1) n}} \mathrm{E} \\
&=\left.\operatorname{Pr}\left[R^{\mathcal{L}}=w \wedge R^{\mathcal{L}^{\prime}}=w^{\prime} \mid\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right]\right] \\
& \sum_{\left(t^{2}, \ldots, t^{\ell}\right):\left(\oplus_{i \in \mathcal{L}}\right.} \operatorname{Pr}\left[\left(t^{\left.t^{\prime}\right)=w}\right.\right. \\
& \cdot \operatorname{Pr}\left[R^{\mathcal{L}^{\prime}}=w^{\prime} \mid\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right] \\
&= \sum_{\left(t^{2}, \ldots, t^{\ell}\right):\left(\oplus_{i \in \mathcal{L}} t^{\prime}\right)=w} \operatorname{Pr}\left[\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right] \\
&= 2^{-n} \cdot 2^{-n}=\operatorname{Pr}\left[R^{\mathcal{L}}=w\right] \cdot \operatorname{Pr}\left[R^{\mathcal{L}^{\prime}}=w^{\prime}\right] .
\end{aligned}
$$

Proving Fact 20(2)

Assume wig. that $1 \in\left(\mathcal{L}^{\prime} \backslash \mathcal{L}\right)$.

$$
\begin{aligned}
& \operatorname{Pr}\left[R^{\mathcal{L}}=w \wedge R^{\mathcal{L}^{\prime}}=w^{\prime}\right] \\
&= t^{\left.t^{2}, \ldots, t^{\ell}\right) \leftarrow\{0,1\}^{(\ell-1) n}} \mathrm{E} \\
&=\left.\operatorname{Pr}\left[R^{\mathcal{L}}=w \wedge R^{\mathcal{L}^{\prime}}=w^{\prime} \mid\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right]\right] \\
& \sum_{\left(t^{2}, \ldots, t^{\ell}\right):\left(\oplus_{i \in \mathcal{L}}\right.} \operatorname{Pr}\left[\left(t^{\left.t^{\prime}\right)=w}\right.\right. \\
& \cdot \operatorname{Pr}\left[R^{\mathcal{L}^{\prime}}=w^{\prime} \mid\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right] \\
&= \sum_{\left(t^{2}, \ldots, t^{\ell}\right):\left(\oplus_{i \in \mathcal{L}} t^{\prime}\right)=w} \operatorname{Pr}\left[\left(T^{2}, \ldots, T^{\ell}\right)=\left(t^{2}, \ldots, t^{\ell}\right)\right] \\
&= 2^{-n} \cdot 2^{-n}=\operatorname{Pr}\left[R^{\mathcal{L}}=w\right] \cdot \operatorname{Pr}\left[R^{\mathcal{L}^{\prime}}=w^{\prime}\right] .
\end{aligned}
$$

Pairwise independence variables

Definition 21 (pairwise independent random variables)

A sequence of random variables X^{1}, \ldots, X^{v} is pairwise independent, if $\forall i \neq j \in[v]$ and $\forall a, b$, it holds that

$$
\operatorname{Pr}\left[X^{i}=a \wedge X^{j}=b\right]=\operatorname{Pr}\left[X^{i}=a\right] \cdot \operatorname{Pr}\left[X^{j}=b\right]
$$

Pairwise independence variables

Definition 21 (pairwise independent random variables)

A sequence of random variables X^{1}, \ldots, X^{v} is pairwise independent, if $\forall i \neq j \in[v]$ and $\forall a, b$, it holds that

$$
\operatorname{Pr}\left[X^{i}=a \wedge X^{j}=b\right]=\operatorname{Pr}\left[X^{i}=a\right] \cdot \operatorname{Pr}\left[X^{j}=b\right]
$$

- By Claim 20, $r^{\mathcal{L}}$ and $r^{\mathcal{L}^{\prime}}$ (chosen by B) are pairwise independent for every $\mathcal{L} \neq \mathcal{L}^{\prime} \subseteq[\ell]$.

Pairwise independence variables

Definition 21 (pairwise independent random variables)

A sequence of random variables X^{1}, \ldots, X^{v} is pairwise independent, if $\forall i \neq j \in[v]$ and $\forall a, b$, it holds that

$$
\operatorname{Pr}\left[X^{i}=a \wedge X^{j}=b\right]=\operatorname{Pr}\left[X^{i}=a\right] \cdot \operatorname{Pr}\left[X^{j}=b\right]
$$

- By Claim 20, $r^{\mathcal{L}}$ and $r^{\mathcal{L}^{\prime}}$ (chosen by B) are pairwise independent for every $\mathcal{L} \neq \mathcal{L}^{\prime} \subseteq[\ell]$.
- Hence, also $W^{\mathcal{L}}$ and $W^{\mathcal{L}^{\prime}}$ are. (Recall, $W^{\mathcal{L}}$ is 1 iff $\left.\mathrm{A}\left(f(x), r^{\mathcal{L}} \oplus e^{i}\right) \oplus b\left(x, r^{\mathcal{L}}\right)=x_{i}\right)$

Pairwise independence variables

Definition 21 (pairwise independent random variables)

A sequence of random variables X^{1}, \ldots, X^{v} is pairwise independent, if $\forall i \neq j \in[v]$ and $\forall a, b$, it holds that

$$
\operatorname{Pr}\left[X^{i}=a \wedge X^{j}=b\right]=\operatorname{Pr}\left[X^{i}=a\right] \cdot \operatorname{Pr}\left[X^{j}=b\right]
$$

- By Claim 20, $r^{\mathcal{L}}$ and $r^{\mathcal{L}^{\prime}}$ (chosen by B) are pairwise independent for every $\mathcal{L} \neq \mathcal{L}^{\prime} \subseteq[\ell]$.
- Hence, also $W^{\mathcal{L}}$ and $W^{\mathcal{L}^{\prime}}$ are. (Recall, $W^{\mathcal{L}}$ is 1 iff $\left.\mathrm{A}\left(f(x), r^{\mathcal{L}} \oplus e^{i}\right) \oplus b\left(x, r^{\mathcal{L}}\right)=x_{i}\right)$

Pairwise independence variables

Definition 21 (pairwise independent random variables)

A sequence of random variables X^{1}, \ldots, X^{v} is pairwise independent, if $\forall i \neq j \in[v]$ and $\forall a, b$, it holds that

$$
\operatorname{Pr}\left[X^{i}=a \wedge X^{j}=b\right]=\operatorname{Pr}\left[X^{i}=a\right] \cdot \operatorname{Pr}\left[X^{j}=b\right]
$$

- By Claim 20, $r^{\mathcal{L}}$ and $r^{\mathcal{L}^{\prime}}$ (chosen by B) are pairwise independent for every $\mathcal{L} \neq \mathcal{L}^{\prime} \subseteq[\ell]$.
- Hence, also $W^{\mathcal{L}}$ and $W^{\mathcal{L}^{\prime}}$ are.
(Recall, $W^{\mathcal{L}}$ is 1 iff $\left.\mathrm{A}\left(f(x), r^{\mathcal{L}} \oplus e^{i}\right) \oplus b\left(x, r^{\mathcal{L}}\right)=x_{i}\right)$

Lemma 22 (Chebyshev’s inequality)

Let X^{1}, \ldots, X^{\vee} be pairwise-independent random variables with expectation μ and variance σ^{2}. Then, for every $\varepsilon>0$,

$$
\operatorname{Pr}\left[\left|\frac{\sum_{j=1}^{v} X^{j}}{v}-\mu\right| \geq \varepsilon\right] \leq \frac{\sigma^{2}}{\varepsilon^{2} v}
$$

B's success provability, cont.

Assuming that B always guesses $\left\{b\left(x, t^{i}\right)\right\}$ correctly, then for every $\mathcal{L} \subseteq[\ell]$

B's success provability, cont.

Assuming that B always guesses $\left\{b\left(x, t^{i}\right)\right\}$ correctly, then for every $\mathcal{L} \subseteq[\ell]$

- $\mathrm{E}\left[W^{\mathcal{L}}\right] \geq \frac{1}{2}+\frac{1}{q(n)}$

B's success provability, cont.

Assuming that B always guesses $\left\{b\left(x, t^{i}\right)\right\}$ correctly, then for every $\mathcal{L} \subseteq[\ell]$

- $\mathrm{E}\left[W^{\mathcal{L}}\right] \geq \frac{1}{2}+\frac{1}{q(n)}$
- $\operatorname{Var}\left(W^{\mathcal{L}}\right):=\mathrm{E}\left[W^{\mathcal{L}}\right]^{2}-\mathrm{E}\left[\left(W^{\mathcal{L}}\right)^{2}\right] \leq 1$

B's success provability, cont.

Assuming that B always guesses $\left\{b\left(x, t^{i}\right)\right\}$ correctly, then for every $\mathcal{L} \subseteq[\ell]$

- $\mathrm{E}\left[W^{\mathcal{L}}\right] \geq \frac{1}{2}+\frac{1}{q(n)}$
- $\operatorname{Var}\left(W^{\mathcal{L}}\right):=\mathrm{E}\left[W^{\mathcal{L}}\right]^{2}-\mathrm{E}\left[\left(W^{\mathcal{L}}\right)^{2}\right] \leq 1$

B's success provability, cont.

Assuming that B always guesses $\left\{b\left(x, t^{i}\right)\right\}$ correctly, then for every $\mathcal{L} \subseteq[\ell]$

- $\mathrm{E}\left[W^{\mathcal{L}}\right] \geq \frac{1}{2}+\frac{1}{q(n)}$
- $\operatorname{Var}\left(W^{\mathcal{L}}\right):=\mathrm{E}\left[W^{\mathcal{L}}\right]^{2}-\mathrm{E}\left[\left(W^{\mathcal{L}}\right)^{2}\right] \leq 1$

Taking $\varepsilon=1 / 2 q(n)$ and $v=2 n / \varepsilon^{2}$ (i.e., $\left.\ell=\left\lceil\log \left(2 n / \varepsilon^{2}\right)\right\rceil\right)$, Lemma 22 yields that

$$
\begin{equation*}
\operatorname{Pr}\left[m_{i}=x_{i}\right]=\operatorname{Pr}\left[\frac{\sum_{\mathcal{L} \subseteq[\ell]} W^{\mathcal{L}}}{v}>\frac{1}{2}\right] \geq 1-\frac{1}{2 n} \tag{4}
\end{equation*}
$$

B's success provability, cont.

Assuming that B always guesses $\left\{b\left(x, t^{i}\right)\right\}$ correctly, then for every $\mathcal{L} \subseteq[\ell]$

- $\mathrm{E}\left[W^{\mathcal{L}}\right] \geq \frac{1}{2}+\frac{1}{q(n)}$
- $\operatorname{Var}\left(W^{\mathcal{L}}\right):=\mathrm{E}\left[W^{\mathcal{L}}\right]^{2}-\mathrm{E}\left[\left(W^{\mathcal{L}}\right)^{2}\right] \leq 1$

Taking $\varepsilon=1 / 2 q(n)$ and $v=2 n / \varepsilon^{2}$ (i.e., $\left.\ell=\left\lceil\log \left(2 n / \varepsilon^{2}\right)\right\rceil\right)$, Lemma 22 yields that

$$
\begin{equation*}
\operatorname{Pr}\left[m_{i}=x_{i}\right]=\operatorname{Pr}\left[\frac{\sum_{\mathcal{L} \subseteq[\ell]} W^{\mathcal{L}}}{v}>\frac{1}{2}\right] \geq 1-\frac{1}{2 n} \tag{4}
\end{equation*}
$$

B's success provability, cont.

Assuming that B always guesses $\left\{b\left(x, t^{i}\right)\right\}$ correctly, then for every $\mathcal{L} \subseteq[\ell]$

- $\mathrm{E}\left[W^{\mathcal{L}}\right] \geq \frac{1}{2}+\frac{1}{q(n)}$
- $\operatorname{Var}\left(W^{\mathcal{L}}\right):=\mathrm{E}\left[W^{\mathcal{L}}\right]^{2}-\mathrm{E}\left[\left(W^{\mathcal{L}}\right)^{2}\right] \leq 1$

Taking $\varepsilon=1 / 2 q(n)$ and $v=2 n / \varepsilon^{2}$ (i.e., $\ell=\left\lceil\log \left(2 n / \varepsilon^{2}\right)\right\rceil$), Lemma 22 yields that

$$
\begin{equation*}
\operatorname{Pr}\left[m_{i}=x_{i}\right]=\operatorname{Pr}\left[\frac{\sum_{\mathcal{L} \subseteq[\ell]} W^{\mathcal{L}}}{v}>\frac{1}{2}\right] \geq 1-\frac{1}{2 n} \tag{4}
\end{equation*}
$$

Hence, by a union bound, B outputs x with probability $\frac{1}{2}$.

B's success provability, cont.

Assuming that B always guesses $\left\{b\left(x, t^{i}\right)\right\}$ correctly, then for every $\mathcal{L} \subseteq[\ell]$

- $\mathrm{E}\left[W^{\mathcal{L}}\right] \geq \frac{1}{2}+\frac{1}{q(n)}$
- $\operatorname{Var}\left(W^{\mathcal{L}}\right):=\mathrm{E}\left[W^{\mathcal{L}}\right]^{2}-\mathrm{E}\left[\left(W^{\mathcal{L}}\right)^{2}\right] \leq 1$

Taking $\varepsilon=1 / 2 q(n)$ and $v=2 n / \varepsilon^{2}$ (i.e., $\ell=\left\lceil\log \left(2 n / \varepsilon^{2}\right)\right\rceil$), Lemma 22 yields that

$$
\begin{equation*}
\operatorname{Pr}\left[m_{i}=x_{i}\right]=\operatorname{Pr}\left[\frac{\sum_{\mathcal{L} \subseteq[\ell]} W^{\mathcal{L}}}{v}>\frac{1}{2}\right] \geq 1-\frac{1}{2 n} \tag{4}
\end{equation*}
$$

Hence, by a union bound, B outputs x with probability $\frac{1}{2}$.

B's success provability, cont.

Assuming that B always guesses $\left\{b\left(x, t^{i}\right)\right\}$ correctly, then for every $\mathcal{L} \subseteq[\ell]$

- $\mathrm{E}\left[W^{\mathcal{L}}\right] \geq \frac{1}{2}+\frac{1}{q(n)}$
- $\operatorname{Var}\left(W^{\mathcal{L}}\right):=\mathrm{E}\left[W^{\mathcal{L}}\right]^{2}-\mathrm{E}\left[\left(W^{\mathcal{L}}\right)^{2}\right] \leq 1$

Taking $\varepsilon=1 / 2 q(n)$ and $v=2 n / \varepsilon^{2}$ (i.e., $\left.\ell=\left\lceil\log \left(2 n / \varepsilon^{2}\right)\right\rceil\right)$, Lemma 22 yields that

$$
\begin{equation*}
\operatorname{Pr}\left[m_{i}=x_{i}\right]=\operatorname{Pr}\left[\frac{\sum_{\mathcal{L} \subseteq[\ell]} W^{\mathcal{L}}}{v}>\frac{1}{2}\right] \geq 1-\frac{1}{2 n} \tag{4}
\end{equation*}
$$

Hence, by a union bound, B outputs x with probability $\frac{1}{2}$.
Taking the guessing into account, yields that B outputs x with probability at least $2^{-\ell} / 2 \in \Omega\left(n / q(n)^{2}\right)$.

Reflections

- Hardcore functions:

Similar ideas allows to output $\log n$ "pseudorandom bits"

Reflections

- Hardcore functions:

Similar ideas allows to output $\log n$ "pseudorandom bits"

- Alternative proof for the LHL:

Let X be a rv with over $\{0,1\}^{n}$ with $\mathrm{H}_{\infty}(X) \geq t$, and assume $\mathrm{SD}\left(\left(R_{n},\left\langle R_{n}, X\right\rangle_{2}\right),\left(R_{n}, U_{1}\right)\right)>\alpha=2^{-c \cdot t}$ for some universal $c>0$.

Reflections

- Hardcore functions:

Similar ideas allows to output $\log n$ "pseudorandom bits"

- Alternative proof for the LHL:

Let X be a rv with over $\{0,1\}^{n}$ with $\mathrm{H}_{\infty}(X) \geq t$, and assume $\mathrm{SD}\left(\left(R_{n},\left\langle R_{n}, X\right\rangle_{2}\right),\left(R_{n}, U_{1}\right)\right)>\alpha=2^{-c \cdot t}$ for some universal $c>0$.

Reflections

- Hardcore functions:

Similar ideas allows to output $\log n$ "pseudorandom bits"

- Alternative proof for the LHL:

Let X be a rv with over $\{0,1\}^{n}$ with $\mathrm{H}_{\infty}(X) \geq t$, and assume $\mathrm{SD}\left(\left(R_{n},\left\langle R_{n}, X\right\rangle_{2}\right),\left(R_{n}, U_{1}\right)\right)>\alpha=2^{-c \cdot t}$ for some universal $c>0$.
\Longrightarrow Exists (a possibly inefficient) algorithm D that distinguishes $\left(R_{n},\left\langle R_{n}, X\right\rangle_{2}\right)$ from $\left(R_{n}, U_{1}\right)$ with advantage α

Reflections

- Hardcore functions:

Similar ideas allows to output $\log n$ "pseudorandom bits"

- Alternative proof for the LHL:

Let X be a rv with over $\{0,1\}^{n}$ with $\mathrm{H}_{\infty}(X) \geq t$, and assume $\operatorname{SD}\left(\left(R_{n},\left\langle R_{n}, X\right\rangle_{2}\right),\left(R_{n}, U_{1}\right)\right)>\alpha=2^{-c \cdot t}$ for some universal $c>0$.
\Longrightarrow Exists (a possibly inefficient) algorithm D that distinguishes $\left(R_{n},\left\langle R_{n}, X\right\rangle_{2}\right)$ from $\left(R_{n}, U_{1}\right)$ with advantage α
\Longrightarrow Exists algorithm A that predicts $\left\langle R_{n}, X\right\rangle_{2}$ given R_{n} with prob $\frac{1}{2}+\alpha$

Reflections

- Hardcore functions:

Similar ideas allows to output $\log n$ "pseudorandom bits"

- Alternative proof for the LHL:

Let X be a rv with over $\{0,1\}^{n}$ with $\mathrm{H}_{\infty}(X) \geq t$, and assume $\operatorname{SD}\left(\left(R_{n},\left\langle R_{n}, X\right\rangle_{2}\right),\left(R_{n}, U_{1}\right)\right)>\alpha=2^{-c \cdot t}$ for some universal $c>0$.
\Longrightarrow Exists (a possibly inefficient) algorithm D that distinguishes $\left(R_{n},\left\langle R_{n}, X\right\rangle_{2}\right)$ from $\left(R_{n}, U_{1}\right)$ with advantage α
\Longrightarrow Exists algorithm A that predicts $\left\langle R_{n}, X\right\rangle_{2}$ given R_{n} with prob $\frac{1}{2}+\alpha$
\Longrightarrow (by GL) Exists algorithm B that guesses X from nothing, with prob $\alpha^{O(1)}>2^{-t}$

Reflections cont.

- List decoding:

An encoder C : $\{0,1\}^{n} \mapsto\{0,1\}^{m}$ and a decoder D, such that the following holds for any $x \in\{0,1\}^{n}$ and c of hamming distance $\frac{1}{2}-\delta$ from $C(x)$:

Reflections cont.

- List decoding:

An encoder C : $\{0,1\}^{n} \mapsto\{0,1\}^{m}$ and a decoder D, such that the following holds for any $x \in\{0,1\}^{n}$ and c of hamming distance $\frac{1}{2}-\delta$ from $C(x)$:

Reflections cont.

- List decoding:

An encoder C : $\{0,1\}^{n} \mapsto\{0,1\}^{m}$ and a decoder D, such that the following holds for any $x \in\{0,1\}^{n}$ and c of hamming distance $\frac{1}{2}-\delta$ from $C(x)$:
$D(c, \delta)$ outputs a list of size at most poly $(1 / \delta)$ that whp. contains x

Reflections cont.

- List decoding:

An encoder C : $\{0,1\}^{n} \mapsto\{0,1\}^{m}$ and a decoder D, such that the following holds for any $x \in\{0,1\}^{n}$ and c of hamming distance $\frac{1}{2}-\delta$ from $C(x)$:
$D(c, \delta)$ outputs a list of size at most poly $(1 / \delta)$ that whp. contains x
The code we used here is known as the Hadamard code

Reflections cont.

- List decoding:

An encoder C : $\{0,1\}^{n} \mapsto\{0,1\}^{m}$ and a decoder D, such that the following holds for any $x \in\{0,1\}^{n}$ and c of hamming distance $\frac{1}{2}-\delta$ from $C(x)$:
$D(c, \delta)$ outputs a list of size at most poly $(1 / \delta)$ that whp. contains x
The code we used here is known as the Hadamard code

- LPN - learning parity with noise:

Find x given polynomially many samples of $\left\langle x, R_{n}\right\rangle_{2}+N$, where $\operatorname{Pr}[N=1] \leq \frac{1}{2}-\delta$.

Reflections cont.

- List decoding:

An encoder C : $\{0,1\}^{n} \mapsto\{0,1\}^{m}$ and a decoder D, such that the following holds for any $x \in\{0,1\}^{n}$ and c of hamming distance $\frac{1}{2}-\delta$ from $C(x)$:
$D(c, \delta)$ outputs a list of size at most poly $(1 / \delta)$ that whp. contains x
The code we used here is known as the Hadamard code

- LPN - learning parity with noise:

Find x given polynomially many samples of $\left\langle x, R_{n}\right\rangle_{2}+N$, where $\operatorname{Pr}[N=1] \leq \frac{1}{2}-\delta$.
The difference comparing to Goldreich-Levin - no control over the R_{n} 's.

