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Informal discussion

f is one-way =⇒ predicting x from f (x) is hard.

But predicting parts of x might be easy.

e.g., let f be a OWF then g(x ,w) = (f (x),w) is one-way

Can we find a function of x that is totally unpredictable — looks uniform —
given f (x)?

Such functions have many cryptographic applications
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Formal definition

Definition 1 (hardcore predicates)

A poly-time computable b : {0,1}n 7→ {0,1} is an hardcore predicate of
f : {0,1}n 7→ {0,1}n, if

Pr
x←{0,1}n

[P(f (x)) = b(x)] ≤ 1
2

+ neg(n)

for any PPT P.

I Does any OWF has such a predicate?

I Is there a generic hardcore predicate for all one-way functions?

Let f be a OWF and let b be a predicate, then g(x) = (f (x),b(x)) is
one-way.

I Does the existence of hardcore predicate for f implies that f is one-way?

Consider f (x , y) = x , then b(x , y) = y is a hardcore predicate for f

Answer to above is positive, in case f is one-to-one
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Weak hardcore predicates

For x ∈ {0,1}n and i ∈ [n], let xi be the i ’th bit of x .

Theorem 2
For f : {0,1}n 7→ {0,1}n, define g : {0,1}n × [n] 7→ {0,1}n × [n] by

g(x , i) = f (x), i

Assuming f is one way, then

Pr
x←{0,1}n,i←[n]

[A(f (x), i) = xi ] ≤ 1− 1/2n

for any PPT A.

Proof: ?

We can now construct an hardcore predicate “for" f :

1. Construct a weak hardcore predicate for g (i.e., b(x , i) := xi ).

2. Amplify it into a (strong) hardcore predicate for gt via parallel repetition

The resulting predicate is not for f but for (the one-way function) gt ...
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The Goldreich-Levin Hardcore predicate

For x , r ∈ {0,1}n, let 〈x , r〉2 := (
∑n

i=1 xi · ri ) mod 2 =
⊕n

i=1 xi · ri .

Theorem 3 (Goldreich-Levin)

For f : {0,1}n 7→ {0,1}n, define g : {0,1}n × {0,1}n 7→ {0,1}n × {0,1}n as
g(x , r) = (f (x), r).

If f is one-way, then b(x , r) := 〈x , r〉2 is an hardcore predicate of g.

I Note that if f is one-to-one, then so is g.

I A slight cheat, b is defined for g and not for the original OWF f

Proof by reduction: a PPT A for predicting b(x , r) “too well" from (f (x), r),
implies an inverter for f
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Section 1

Proving GL – The information theoretic case
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Min entropy

Definition 4 (min-entropy)

The min entropy of a random variable (or distribution) X , is defined as

H∞(X ) := min
y∈Supp(X)

log
1

PrX [y ]
.

Examples:

I Z is uniform over a set of size 2k .

I Z = X |f (X)=y , where f : {0,1}n 7→ {0,1}n is 2k to 1 ,
y ∈ f ({0,1}n) := {f (x) : x ∈ {0,1}n} and X is uniform over {0,1}n.

Equivalently, X ← f−1(y).

In both cases, H∞(Z ) = k .
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Pairwise independent hashing

Definition 5 (pairwise independent function family)

A function family H = {h : {0,1}n 7→ {0,1}m} is pairwise independent, if ∀
x 6= x ′ ∈ {0,1}n and y , y ′ ∈ {0,1}m, it holds that
Prh←H[h(x) = y ∧ h(x ′) = y ′)] = 2−2m.

Lemma 6 (leftover hash lemma)

Let X be a rv over {0,1}n with H∞(X ) ≥ k and let
H = {h : {0,1}n 7→ {0,1}m} be pairwise independent, then

SD((H,H(X )), (H,Um)) ≤ 2(m−k−2))/2,

where H is uniformly distributed over H and Um is uniformly distributed over
{0,1}m.

See proof here, page 13.

Benny Applebaum & Iftach Haitner (TAU) Foundation of Cryptography November 17, 2016 8 / 28
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Efficient function families

Definition 7 (efficient function families)

An ensemble of function families F = {Fn}n∈N is efficient, if

Samplable. Exists PPT that given 1n, outputs (the description of) a uniform
element in Fn.

Efficient. Exists poly-time algorithm that given x ∈ {0,1}n and (a
description of) f ∈ Fn, outputs f (x).
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Proving GL for compressing functions

Definition 8

Function f : {0,1}n 7→ {0,1}n is d(n) regular, if
∣∣f−1(y)

∣∣ = d(n) for every
y ∈ f ({0,1}n).

Lemma 9

Let f : {0,1}n 7→ {0,1}n be a d(n) ∈ 2ω(log n) regular function, and let
H = {Hn} be an efficient family of Boolean pairwise independent functions
over {0,1}n. Define g : {0,1}n ×Hn 7→ {0,1}n ×Hn as

g(x ,h) = (f (x),h),

then b(x ,h) = h(x) is an hardcore predicate of g.

How does it relate to Goldreich-Levin?
{Hn = {br (·) = b(r , ·)}r∈{0,1}n} is (almost) pairwise independent.
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g(x ,h) = (f (x),h),

then b(x ,h) = h(x) is an hardcore predicate of g.

How does it relate to Goldreich-Levin?
{Hn = {br (·) = b(r , ·)}r∈{0,1}n} is (almost) pairwise independent.
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Proving Lemma 9

The lemma follows by the next claim (?)

Claim 10

SD ((f (Un),H,H(Un)), (f (Un),H,U1)) = neg(n), where H = Hn is uniformly
distributed over Hn.

Proving the claim. For y ∈ f ({0,1}n), let Xy be uniformly distributed over
f−1(y) := {x ∈ {0,1}n : f (x) = y}. Compute

SD((f (Un),H,H(Un)), (f (Un),H,U1))

= E
y←f (Un)

[
SD((f (Un),H,H(Un)|f (Un)=y , (f (Un),H,U1)|f (Un)=y )

]
= E

y←f (Un)
[SD((y ,H,H(Xy )), (y ,H,U1))]

≤ max
y∈f ({0,1}n)

SD((y ,H,H(Xy )), (y ,H,U1))

= max
y∈f ({0,1}n)

SD((H,H(Xy )), (H,U1))
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Proving Lemma 9, cont.

Since H∞(Xy ) = log(d(n)) for any y ∈ f ({0,1}n),

the leftover hash lemma
(Lemma 6) yields that

SD((H,H(Xy )), (H,U1)) ≤ 2(1−H∞(Xy )−2))/2

= 2(1−log(d(n)))/2 = neg(n).
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Section 2

Proving GL – The Computational Case
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Proving Goldreich-Levin Theorem

Theorem 11 (Goldreich-Levin)

For f : {0,1}n 7→ {0,1}n, define g : {0,1}n × {0,1}n 7→ {0,1}n × {0,1}n as
g(x , r) = (f (x), r).

If f is one-way, then b(x , r) := 〈x , r〉2 is an hardcore predicate of g.

Proof: Assume ∃ PPT A, p ∈ poly and infinite set I ⊆ N with

Pr[A(g(Un,Rn)) = b(Un,Rn)] ≥ 1
2

+
1

p(n)
, (1)

for any n ∈ I, where Un and Rn are uniformly (and independently) distributed
over {0,1}n.

We show ∃ PPT B and q ∈ poly with

Pr
y←f (Un)

[B(y) ∈ f−1(y)] ≥ 1
q(n)

, (2)

for every n ∈ I. In the following fix n ∈ I.
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Focusing on a good set

Claim 12
There exists a set S ⊆ {0,1}n with

1. |S|2n ≥ 1
2p(n) , and

2. Pr [A(f (x),Rn) = b(x ,Rn)]] ≥ 1
2 + 1

2p(n) , ∀x ∈ S.

Proof: Let S := {x ∈ {0,1}n : Pr [A(f (x),Rn) = b(x ,Rn)] ≥ 1
2 + 1

2p(n)}.

Pr[A(g(Un,Rn)) = b(Un,Rn)] ≤ Pr[Un /∈ S] ·
(

1
2

+
1

2p(n)

)
+ Pr[Un ∈ S]

≤
(

1
2

+
1

2p(n)

)
+ Pr[Un ∈ S]

We conclude the theorem’s proof showing exist q ∈ poly and PPT B:

Pr[B(f (x)) ∈ f−1(f (x)) ≥ 1
q(n)

, (3)

for every x ∈ S. In the following we fix x ∈ S.
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The Perfect Case

Pr [A(f (x),Rn) = b(x ,Rn)] = 1

In particular, A(f (x),ei ) = b(x ,ei ) for every i ∈ [n], where
ei = (0, . . . ,0︸ ︷︷ ︸

i−1

,1,0, . . . ,0︸ ︷︷ ︸
n−i

).

Hence, xi = 〈x ,ei〉2 = b(x ,ei ) = A(f (x),ei )

Algorithm 13 (Inverter B on input y )

Return (A(y ,e1), . . . ,A(y ,en)).
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Easy case

Pr [A(f (x),Rn) = b(x ,Rn)] ≥ 1− neg(n)

Fact 14

1. b(x ,w)⊕ b(x , y) = b(x ,w ⊕ y) for every w ,w , y ∈ {0,1}n.

2. ∀r ∈ {0,1}n, the rv (Rn ⊕ r) is uniformly distributed over {0,1}n.

Hence, ∀i ∈ [n]:

1. xi = b(x ,ei ) = b(x , r)⊕ b(x , r ⊕ ei ) for every r ∈ {0,1}n

2. Pr[A(f (x),Rn) = b(x ,Rn)∧A(f (x),Rn ⊕ ei ) = b(x ,Rn ⊕ ei )] ≥ 1− neg(n)

Algorithm 15 (Inverter B on input y )

Return (A(y ,Rn)⊕ A(y ,Rn ⊕ e1)), . . . ,A(y ,Rn)⊕ A(y ,Rn ⊕ en)).
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Proving Fact 14

1. For w ,w , y ∈ {0,1}n:

b(x , y)⊕ b(x ,w) =

(⊕
i=1n

xi · yi

)
⊕

(⊕
i=1n

xi · wi

)
=
⊕
i=1n

xi · (yi ⊕ wi )

= b(x , y ⊕ w)

2. For r , y ∈ {0,1}n:

Pr [Rn ⊕ r = y ] = Pr [Rn = y ⊕ r ] = 2−n
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Intermediate Case

Pr [A(f (x),Rn) = b(x ,Rn)] ≥ 3
4 + 1

q(n)

For any i ∈ [n]

Pr[A(f (x),Rn)⊕ A(f (x),Rn ⊕ ei ) = xi ]

≥ Pr[A(f (x),Rn) = b(x ,Rn) ∧ A(f (x),Rn ⊕ ei ) = b(x ,Rn ⊕ ei )]

≥ 1−
(

1− (
3
4

+
1

q(n)
)

)
−
(

1− (
3
4

+
1

q(n)
)

)
=

1
2

+
2

q(n)

Algorithm 16 (Inverter B on input y ∈ {0,1}n)

1. For every i ∈ [n]

1.1 Sample r1, . . . , r v ∈ {0,1}n uniformly at random
1.2 Let mi = majj∈[v ]{(A(y , r j )⊕ A(y , r j ⊕ ei )}

2. Output (m1, . . . ,mn)
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B’s Success Provability

The following claim holds for “large enough" v = v(n) ∈ poly(n).

Claim 17
For every i ∈ [n], it holds that Pr[mi = xi ] ≥ 1− neg(n).

Proof: For j ∈ [v ], let the indicator rv W j be 1, iff
A(f (x), r j )⊕ A(f (x), r j ⊕ ei ) = xi .
We want to lowerbound Pr

[∑v
j=1 W j > v

2

]
.

I The W j are iids and E[W j ] ≥ 1
2 + 2

q(n) for every j ∈ [v ]

Lemma 18 (Hoeffding’s inequality)

Let X 1, . . . ,X v be iids over [0,1] with expectation µ. Then,

Pr
[
|
∑v

j=i X j

v − µ| ≥ ε
]
≤ 2 · exp(−2ε2v) for every ε > 0.

We complete the proof taking X j = W j , ε = 1/4q(n) and v ∈ ω(log(n) · q(n)2).
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The actual (hard) case

Pr [A(f (x),Rn) = b(x ,Rn)] ≥ 1
2 + 1

q(n)

I What goes wrong?

Pr[A(f (x),Rn)⊕ A(f (x),Rn ⊕ ei ) = xi ] ≥ 2
q(n)

I Hence, using a random guess does better than using A :-<
I Idea: guess the values of {b(x , r1), . . . ,b(x , r v )}

(instead of calling {A(f (x), r1), . . . ,A(f (x), r v )})
Problem: negligible success probability

Solution: choose the samples in a correlated manner
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I Idea: guess the values of {b(x , r1), . . . ,b(x , r v )}

(instead of calling {A(f (x), r1), . . . ,A(f (x), r v )})
Problem: negligible success probability

Solution: choose the samples in a correlated manner
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Algorithm B

I Fix ` = `(n) (will be O(log n)) and set v = 2` − 1.

I In the following L ⊆ [`] stands for a non empty choice

Algorithm 19 (Inverter B on y = f (x) ∈ {0,1}n)

1. Sample uniformly (and independently) t1, . . . , t` ∈ {0,1}n

2. Guess the value of {b(x , t i )}i∈[`]

3. For all L ⊆ [`]: set rL =
⊕

i∈L t i and compute b(x , rL) =
⊕

i∈L b(x , t i ).

4. For all i ∈ [n], let mi = majL⊆[`]{A(f (x), rL ⊕ ei )⊕ b(x , rL)}

5. Output (m1, . . . ,mn)

I Fix i ∈ [n], and let WL be 1 iff A(f (x), rL ⊕ ei )⊕ b(x , rL) = xi .

I We want to lowerbound Pr
[∑
L⊆[`] W

L > v
2

]
I Problem: the WL’s are dependent!
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Analyzing B’s success probability

1. Let T 1, . . . ,T ` be iid and uniform over {0,1}n.

2. For L ⊆ [`], let RL =
⊕

i∈L T i .

Claim 20

1. ∀L ⊆ [`], RL is uniformly distributed over {0,1}n.

2. ∀ w ,w ′ ∈ {0,1}n and L 6= L′ ⊆ [`], it holds that
Pr[RL = w ∧ RL

′
= w ′] = Pr[RL = w ] · Pr[RL

′
= w ′] = 2−2n.

Proof: (1) is clear, we prove (2) in the next slide.
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Proving Fact 20(2)

Assume wlg. that 1 ∈ (L′ \ L).

Pr[RL = w ∧ RL
′

= w ′]

= E
(t2,...,t`)←{0,1}(`−1)n

[
Pr[RL = w ∧ RL

′
= w ′ | (T 2, . . . ,T `) = (t2, . . . , t`)]

]
=

∑
(t2,...,t`) : (

⊕
i∈L t i )=w

Pr[(T 2, . . . ,T `) = (t2, . . . , t`)]

· Pr[RL
′

= w ′ | (T 2, . . . ,T `) = (t2, . . . , t`)]

=
∑

(t2,...,t`) : (
⊕

i∈L t i )=w

Pr[(T 2, . . . ,T `) = (t2, . . . , t`)] · 2−n

= 2−n · 2−n = Pr[RL = w ] · Pr[RL
′

= w ′].
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Pairwise independence variables

Definition 21 (pairwise independent random variables)

A sequence of random variables X 1, . . . ,X v is pairwise independent, if
∀i 6= j ∈ [v ] and ∀a,b, it holds that

Pr[X i = a ∧ X j = b] = Pr[X i = a] · Pr[X j = b]

I By Claim 20, rL and rL
′

(chosen by B) are pairwise independent for
every L 6= L′ ⊆ [`].

I Hence, also WL and WL′ are.
(Recall, WL is 1 iff A(f (x), rL ⊕ ei )⊕ b(x , rL) = xi )

Lemma 22 (Chebyshev’s inequality)

Let X 1, . . . ,X v be pairwise-independent random variables with expectation µ
and variance σ2. Then, for every ε > 0,

Pr

[∣∣∣∣
∑v

j=1 X j

v
− µ

∣∣∣∣ ≥ ε
]
≤ σ2

ε2v
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and variance σ2. Then, for every ε > 0,

Pr

[∣∣∣∣
∑v

j=1 X j

v
− µ

∣∣∣∣ ≥ ε
]
≤ σ2

ε2v
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B’s success provability, cont.

Assuming that B always guesses {b(x , t i )} correctly, then for every
L ⊆ [`]

I E[WL] ≥ 1
2 + 1

q(n)
I Var(WL) := E[WL]2 − E[(WL)2] ≤ 1

Taking ε = 1/2q(n) and v = 2n/ε2 (i.e., ` =
⌈
log(2n/ε2)

⌉
), Lemma 22

yields that

Pr[mi = xi ] = Pr

[∑
L⊆[`] W

L

v
>

1
2

]
≥ 1− 1

2n
(4)

Hence, by a union bound, B outputs x with probability 1
2 .

Taking the guessing into account, yields that B outputs x with probability
at least 2−`/2 ∈ Ω(n/q(n)2).
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Reflections

I Hardcore functions:
Similar ideas allows to output log n “pseudorandom bits"

I Alternative proof for the LHL:
Let X be a rv with over {0,1}n with H∞(X ) ≥ t , and assume
SD((Rn, 〈Rn,X 〉2), (Rn,U1)) > α = 2−c·t for some universal c > 0.

=⇒ Exists (a possibly inefficient) algorithm D that distinguishes
(Rn, 〈Rn,X 〉2) from (Rn,U1) with advantage α

=⇒ Exists algorithm A that predicts 〈Rn,X 〉2 given Rn with prob 1
2 + α

=⇒ (by GL) Exists algorithm B that guesses X from nothing, with prob
αO(1) > 2−t
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Reflections cont.

I List decoding:
An encoder C : {0,1}n 7→ {0,1}m and a decoder D, such that the
following holds for any x ∈ {0,1}n and c of hamming distance 1

2 − δ from
C(x):

D(c, δ) outputs a list of size at most poly(1/δ) that whp. contains x

The code we used here is known as the Hadamard code

I LPN - learning parity with noise:
Find x given polynomially many samples of 〈x ,Rn〉2 + N, where
Pr[N = 1] ≤ 1

2 − δ.

The difference comparing to Goldreich-Levin – no control over the Rn’s.
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