Foundation of Cryptography, Lecture 3 Hardcore Predicates for Any One-way Function

Benny Applebaum & Iftach Haitner, Tel Aviv University

Tel Aviv University.

November 17, 2016

f is one-way \implies predicting *x* from f(x) is hard.

f is one-way \implies predicting *x* from f(x) is hard.

But predicting parts of *x* might be easy.

f is one-way \implies predicting x from f(x) is hard.

But predicting parts of *x* might be easy.

e.g., let f be a OWF then g(x, w) = (f(x), w) is one-way

f is one-way \implies predicting x from f(x) is hard.

But predicting parts of *x* might be easy.

e.g., let f be a OWF then g(x, w) = (f(x), w) is one-way

Can we find a function of x that is totally unpredictable — looks uniform — given f(x)?

f is one-way \implies predicting x from f(x) is hard.

But predicting parts of *x* might be easy.

e.g., let f be a OWF then g(x, w) = (f(x), w) is one-way

Can we find a function of x that is totally unpredictable — looks uniform — given f(x)?

Such functions have many cryptographic applications

Definition 1 (hardcore predicates)

A poly-time computable $b: \{0, 1\}^n \mapsto \{0, 1\}$ is an hardcore predicate of $f: \{0, 1\}^n \mapsto \{0, 1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} [\mathsf{P}(f(x)) = b(x)] \le \frac{1}{2} + \operatorname{neg}(n)$$

Definition 1 (hardcore predicates)

A poly-time computable $b: \{0, 1\}^n \mapsto \{0, 1\}$ is an hardcore predicate of $f: \{0, 1\}^n \mapsto \{0, 1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} [\mathsf{P}(f(x)) = b(x)] \le \frac{1}{2} + \operatorname{neg}(n)$$

for any PPT P.

Does any OWF has such a predicate?

Definition 1 (hardcore predicates)

A poly-time computable $b: \{0, 1\}^n \mapsto \{0, 1\}$ is an hardcore predicate of $f: \{0, 1\}^n \mapsto \{0, 1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} [\mathsf{P}(f(x)) = b(x)] \le \frac{1}{2} + \operatorname{neg}(n)$$

- Does any OWF has such a predicate?
- Is there a generic hardcore predicate for all one-way functions?

Definition 1 (hardcore predicates)

A poly-time computable $b: \{0, 1\}^n \mapsto \{0, 1\}$ is an hardcore predicate of $f: \{0, 1\}^n \mapsto \{0, 1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} [\mathsf{P}(f(x)) = b(x)] \le \frac{1}{2} + \operatorname{neg}(n)$$

- Does any OWF has such a predicate?
- Is there a generic hardcore predicate for all one-way functions?
 Let *f* be a OWF and let *b* be a predicate, then g(x) = (f(x), b(x)) is one-way.

Definition 1 (hardcore predicates)

A poly-time computable $b: \{0, 1\}^n \mapsto \{0, 1\}$ is an hardcore predicate of $f: \{0, 1\}^n \mapsto \{0, 1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} [\mathsf{P}(f(x)) = b(x)] \le \frac{1}{2} + \operatorname{neg}(n)$$

- Does any OWF has such a predicate?
- Is there a generic hardcore predicate for all one-way functions?
 Let *f* be a OWF and let *b* be a predicate, then g(x) = (f(x), b(x)) is one-way.
- Does the existence of hardcore predicate for f implies that f is one-way?

Definition 1 (hardcore predicates)

A poly-time computable $b: \{0, 1\}^n \mapsto \{0, 1\}$ is an hardcore predicate of $f: \{0, 1\}^n \mapsto \{0, 1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} [\mathsf{P}(f(x)) = b(x)] \le \frac{1}{2} + \operatorname{neg}(n)$$

- Does any OWF has such a predicate?
- Is there a generic hardcore predicate for all one-way functions?
 Let *f* be a OWF and let *b* be a predicate, then g(x) = (f(x), b(x)) is one-way.
- Does the existence of hardcore predicate for *f* implies that *f* is one-way? Consider f(x, y) = x, then b(x, y) = y is a hardcore predicate for *f*

Definition 1 (hardcore predicates)

A poly-time computable $b: \{0, 1\}^n \mapsto \{0, 1\}$ is an hardcore predicate of $f: \{0, 1\}^n \mapsto \{0, 1\}^n$, if

$$\Pr_{x \leftarrow \{0,1\}^n} [\mathsf{P}(f(x)) = b(x)] \le \frac{1}{2} + \operatorname{neg}(n)$$

- Does any OWF has such a predicate?
- Is there a generic hardcore predicate for all one-way functions?
 Let *f* be a OWF and let *b* be a predicate, then g(x) = (f(x), b(x)) is one-way.
- Does the existence of hardcore predicate for *f* implies that *f* is one-way? Consider *f*(*x*, *y*) = *x*, then *b*(*x*, *y*) = *y* is a hardcore predicate for *f* Answer to above is positive, in case *f* is one-to-one

For $x \in \{0, 1\}^n$ and $i \in [n]$, let x_i be the *i*'th bit of x.

For $x \in \{0, 1\}^n$ and $i \in [n]$, let x_i be the *i*'th bit of x.

Theorem 2

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, define $g: \{0,1\}^n \times [n] \mapsto \{0,1\}^n \times [n]$ by

g(x,i)=f(x),i

Assuming f is one way, then

$$\Pr_{x \leftarrow \{0,1\}^n, i \leftarrow [n]} [\mathsf{A}(f(x), i) = x_i] \le 1 - 1/2n$$

For $x \in \{0, 1\}^n$ and $i \in [n]$, let x_i be the *i*'th bit of x.

Theorem 2

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, define $g: \{0,1\}^n \times [n] \mapsto \{0,1\}^n \times [n]$ by

g(x,i)=f(x),i

Assuming f is one way, then

$$\Pr_{x \leftarrow \{0,1\}^n, i \leftarrow [n]} [\mathsf{A}(f(x), i) = x_i] \le 1 - 1/2n$$

for any PPT A.

Proof: ?

For $x \in \{0, 1\}^n$ and $i \in [n]$, let x_i be the *i*'th bit of x.

Theorem 2

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, define $g: \{0,1\}^n \times [n] \mapsto \{0,1\}^n \times [n]$ by

g(x,i)=f(x),i

Assuming f is one way, then

$$\Pr_{x \leftarrow \{0,1\}^n, i \leftarrow [n]} [\mathsf{A}(f(x), i) = x_i] \le 1 - 1/2n$$

for any PPT A.

Proof: ?

We can now construct an hardcore predicate "for" f:

- **1.** Construct a weak hardcore predicate for *g* (i.e., $b(x, i) := x_i$).
- 2. Amplify it into a (strong) hardcore predicate for g^t via parallel repetition

For $x \in \{0, 1\}^n$ and $i \in [n]$, let x_i be the *i*'th bit of x.

Theorem 2

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, define $g: \{0,1\}^n \times [n] \mapsto \{0,1\}^n \times [n]$ by

g(x,i)=f(x),i

Assuming f is one way, then

$$\Pr_{x \leftarrow \{0,1\}^n, i \leftarrow [n]} [\mathsf{A}(f(x), i) = x_i] \le 1 - 1/2n$$

for any PPT A.

Proof: ?

We can now construct an hardcore predicate "for" f:

- **1.** Construct a weak hardcore predicate for g (i.e., $b(x, i) := x_i$).
- 2. Amplify it into a (strong) hardcore predicate for g^t via parallel repetition

The resulting predicate is not for f but for (the one-way function) g^t ...

Foundation of Cryptography

4/28

For $x, r \in \{0, 1\}^n$, let $\langle x, r \rangle_2 := (\sum_{i=1}^n x_i \cdot r_i) \mod 2 = \bigoplus_{i=1}^n x_i \cdot r_i$.

For $x, r \in \{0, 1\}^n$, let $\langle x, r \rangle_2 := (\sum_{i=1}^n x_i \cdot r_i) \mod 2 = \bigoplus_{i=1}^n x_i \cdot r_i$.

Theorem 3 (Goldreich-Levin)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ as g(x,r) = (f(x),r).

If f is one-way, then $b(x, r) := \langle x, r \rangle_2$ is an hardcore predicate of g.

For $x, r \in \{0, 1\}^n$, let $\langle x, r \rangle_2 := (\sum_{i=1}^n x_i \cdot r_i) \mod 2 = \bigoplus_{i=1}^n x_i \cdot r_i$.

Theorem 3 (Goldreich-Levin)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ as g(x,r) = (f(x),r).

If f is one-way, then $b(x, r) := \langle x, r \rangle_2$ is an hardcore predicate of g.

Note that if f is one-to-one, then so is g.

For $x, r \in \{0, 1\}^n$, let $\langle x, r \rangle_2 := (\sum_{i=1}^n x_i \cdot r_i) \mod 2 = \bigoplus_{i=1}^n x_i \cdot r_i$.

Theorem 3 (Goldreich-Levin)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ as g(x,r) = (f(x),r).

If f is one-way, then $b(x, r) := \langle x, r \rangle_2$ is an hardcore predicate of g.

- Note that if f is one-to-one, then so is g.
- A slight cheat, b is defined for g and not for the original OWF f

For $x, r \in \{0, 1\}^n$, let $\langle x, r \rangle_2 := (\sum_{i=1}^n x_i \cdot r_i) \mod 2 = \bigoplus_{i=1}^n x_i \cdot r_i$.

Theorem 3 (Goldreich-Levin)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ as g(x,r) = (f(x),r).

If f is one-way, then $b(x, r) := \langle x, r \rangle_2$ is an hardcore predicate of g.

- Note that if f is one-to-one, then so is g.
- A slight cheat, b is defined for g and not for the original OWF f

For $x, r \in \{0, 1\}^n$, let $\langle x, r \rangle_2 := (\sum_{i=1}^n x_i \cdot r_i) \mod 2 = \bigoplus_{i=1}^n x_i \cdot r_i$.

Theorem 3 (Goldreich-Levin)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ as g(x,r) = (f(x),r).

If f is one-way, then $b(x, r) := \langle x, r \rangle_2$ is an hardcore predicate of g.

- Note that if f is one-to-one, then so is g.
- A slight cheat, b is defined for g and not for the original OWF f

Proof by reduction: a PPT A for predicting b(x, r) "too well" from (f(x), r), implies an inverter for f

Section 1

Proving GL – The information theoretic case

Min entropy

Definition 4 (min-entropy)

The min entropy of a random variable (or distribution) X, is defined as

$$\mathsf{H}_{\infty}(X) := \min_{y \in \mathsf{Supp}(X)} \log \frac{1}{\Pr_X[y]}$$

Min entropy

Definition 4 (min-entropy)

The min entropy of a random variable (or distribution) X, is defined as

$$H_{\infty}(X) := \min_{y \in \text{Supp}(X)} \log \frac{1}{\Pr_X[y]}$$

Examples:

- Z is uniform over a set of size 2^k.
- ► $Z = X |_{f(X)=y}$, where $f: \{0,1\}^n \mapsto \{0,1\}^n$ is 2^k to 1, $y \in f(\{0,1\}^n) := \{f(x) : x \in \{0,1\}^n\}$ and X is uniform over $\{0,1\}^n$. Equivalently, $X \leftarrow f^{-1}(y)$.

In both cases, $H_{\infty}(Z) = k$.

Pairwise independent hashing

Definition 5 (pairwise independent function family)

A function family $\mathcal{H} = \{h: \{0, 1\}^n \mapsto \{0, 1\}^m\}$ is pairwise independent, if $\forall x \neq x' \in \{0, 1\}^n$ and $y, y' \in \{0, 1\}^m$, it holds that $\Pr_{h \leftarrow \mathcal{H}}[h(x) = y \land h(x') = y')] = 2^{-2m}$.

Pairwise independent hashing

Definition 5 (pairwise independent function family)

A function family $\mathcal{H} = \{h: \{0,1\}^n \mapsto \{0,1\}^m\}$ is pairwise independent, if $\forall x \neq x' \in \{0,1\}^n$ and $y, y' \in \{0,1\}^m$, it holds that $\Pr_{h \leftarrow \mathcal{H}}[h(x) = y \land h(x') = y')] = 2^{-2m}$.

Lemma 6 (leftover hash lemma)

Let X be a rv over $\{0,1\}^n$ with $H_{\infty}(X) \ge k$ and let $\mathcal{H} = \{h: \{0,1\}^n \mapsto \{0,1\}^m\}$ be pairwise independent, then $SD((H, H(X)), (H, U_m)) \le 2^{(m-k-2))/2},$

where *H* is uniformly distributed over \mathcal{H} and U_m is uniformly distributed over $\{0, 1\}^m$.

See proof here, page 13.

Efficient function families

Definition 7 (efficient function families)

An ensemble of function families $\mathcal{F} = {\mathcal{F}_n}_{n \in \mathbb{N}}$ is efficient, if

Samplable. Exists PPT that given 1^n , outputs (the description of) a uniform element in \mathcal{F}_n .

Efficient. Exists poly-time algorithm that given $x \in \{0, 1\}^n$ and (a description of) $f \in \mathcal{F}_n$, outputs f(x).

Definition 8

Function $f: \{0, 1\}^n \mapsto \{0, 1\}^n$ is d(n) regular, if $|f^{-1}(y)| = d(n)$ for every $y \in f(\{0, 1\}^n)$.

Definition 8

Function $f: \{0, 1\}^n \mapsto \{0, 1\}^n$ is d(n) regular, if $|f^{-1}(y)| = d(n)$ for every $y \in f(\{0, 1\}^n)$.

Lemma 9

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a $d(n) \in 2^{\omega(\log n)}$ regular function, and let $\mathcal{H} = \{\mathcal{H}_n\}$ be an efficient family of Boolean pairwise independent functions over $\{0,1\}^n$. Define $g: \{0,1\}^n \times \mathcal{H}_n \mapsto \{0,1\}^n \times \mathcal{H}_n$ as

g(x,h)=(f(x),h),

then b(x, h) = h(x) is an hardcore predicate of g.

Definition 8

Function $f: \{0, 1\}^n \mapsto \{0, 1\}^n$ is d(n) regular, if $|f^{-1}(y)| = d(n)$ for every $y \in f(\{0, 1\}^n)$.

Lemma 9

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a $d(n) \in 2^{\omega(\log n)}$ regular function, and let $\mathcal{H} = \{\mathcal{H}_n\}$ be an efficient family of Boolean pairwise independent functions over $\{0,1\}^n$. Define $g: \{0,1\}^n \times \mathcal{H}_n \mapsto \{0,1\}^n \times \mathcal{H}_n$ as

g(x,h)=(f(x),h),

then b(x, h) = h(x) is an hardcore predicate of g.

How does it relate to Goldreich-Levin?

Definition 8

Function $f: \{0, 1\}^n \mapsto \{0, 1\}^n$ is d(n) regular, if $|f^{-1}(y)| = d(n)$ for every $y \in f(\{0, 1\}^n)$.

Lemma 9

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a $d(n) \in 2^{\omega(\log n)}$ regular function, and let $\mathcal{H} = \{\mathcal{H}_n\}$ be an efficient family of Boolean pairwise independent functions over $\{0,1\}^n$. Define $g: \{0,1\}^n \times \mathcal{H}_n \mapsto \{0,1\}^n \times \mathcal{H}_n$ as

g(x,h)=(f(x),h),

then b(x, h) = h(x) is an hardcore predicate of g.

How does it relate to Goldreich-Levin? $\{\mathcal{H}_n = \{b_r(\cdot) = b(r, \cdot)\}_{r \in \{0,1\}^n}\}$ is (almost) pairwise independent.

Proving Lemma 9

The lemma follows by the next claim (?)

Claim 10

SD $((f(U_n), H, H(U_n)), (f(U_n), H, U_1)) = neg(n)$, where $H = H_n$ is uniformly distributed over \mathcal{H}_n .

The lemma follows by the next claim (?)

Claim 10

SD $((f(U_n), H, H(U_n)), (f(U_n), H, U_1)) = neg(n)$, where $H = H_n$ is uniformly distributed over \mathcal{H}_n .

Proving the claim. For $y \in f(\{0, 1\}^n)$, let X_y be uniformly distributed over $f^{-1}(y) := \{x \in \{0, 1\}^n : f(x) = y\}.$

The lemma follows by the next claim (?)

Claim 10

SD $((f(U_n), H, H(U_n)), (f(U_n), H, U_1)) = neg(n)$, where $H = H_n$ is uniformly distributed over \mathcal{H}_n .

Proving the claim. For $y \in f(\{0, 1\}^n)$, let X_y be uniformly distributed over $f^{-1}(y) := \{x \in \{0, 1\}^n : f(x) = y\}$. Compute

 $SD((f(U_n), H, H(U_n)), (f(U_n), H, U_1)) = \underset{y \leftarrow f(U_n)}{\mathsf{E}} \left[SD((f(U_n), H, H(U_n)|_{f(U_n)=y}, (f(U_n), H, U_1)|_{f(U_n)=y}) \right]$

The lemma follows by the next claim (?)

Claim 10

SD $((f(U_n), H, H(U_n)), (f(U_n), H, U_1)) = neg(n)$, where $H = H_n$ is uniformly distributed over \mathcal{H}_n .

Proving the claim. For $y \in f(\{0, 1\}^n)$, let X_y be uniformly distributed over $f^{-1}(y) := \{x \in \{0, 1\}^n : f(x) = y\}$. Compute

 $SD((f(U_n), H, H(U_n)), (f(U_n), H, U_1))$ = $\underset{y \leftarrow f(U_n)}{E} [SD((f(U_n), H, H(U_n)|_{f(U_n)=y}, (f(U_n), H, U_1)|_{f(U_n)=y})]$ = $\underset{y \leftarrow f(U_n)}{E} [SD((y, H, H(X_y)), (y, H, U_1))]$

The lemma follows by the next claim (?)

Claim 10

SD $((f(U_n), H, H(U_n)), (f(U_n), H, U_1)) = neg(n)$, where $H = H_n$ is uniformly distributed over \mathcal{H}_n .

Proving the claim. For $y \in f(\{0, 1\}^n)$, let X_y be uniformly distributed over $f^{-1}(y) := \{x \in \{0, 1\}^n : f(x) = y\}$. Compute

 $SD((f(U_n), H, H(U_n)), (f(U_n), H, U_1))$ $= \underset{y \leftarrow f(U_n)}{E} [SD((f(U_n), H, H(U_n)|_{f(U_n)=y}, (f(U_n), H, U_1)|_{f(U_n)=y})]$ $= \underset{y \leftarrow f(U_n)}{E} [SD((y, H, H(X_y)), (y, H, U_1))]$ $\leq \underset{y \in f(\{0,1\}^n)}{\max} SD((y, H, H(X_y)), (y, H, U_1))$

The lemma follows by the next claim (?)

Claim 10

SD $((f(U_n), H, H(U_n)), (f(U_n), H, U_1)) = neg(n)$, where $H = H_n$ is uniformly distributed over \mathcal{H}_n .

Proving the claim. For $y \in f(\{0, 1\}^n)$, let X_y be uniformly distributed over $f^{-1}(y) := \{x \in \{0, 1\}^n : f(x) = y\}$. Compute

 $SD((f(U_n), H, H(U_n)), (f(U_n), H, U_1))$ $= \underset{y \leftarrow f(U_n)}{E} [SD((f(U_n), H, H(U_n)|_{f(U_n)=y}, (f(U_n), H, U_1)|_{f(U_n)=y})]$ $= \underset{y \leftarrow f(U_n)}{E} [SD((y, H, H(X_y)), (y, H, U_1))]$ $\leq \underset{y \in f(\{0,1\}^n)}{\max} SD((y, H, H(X_y)), (y, H, U_1))$

Proving Lemma 9, cont.

Since $H_{\infty}(X_y) = \log(d(n))$ for any $y \in f(\{0,1\}^n)$,

Proving Lemma 9, cont.

Since $H_{\infty}(X_y) = \log(d(n))$ for any $y \in f(\{0,1\}^n)$, the leftover hash lemma (Lemma 6) yields that

 $\begin{aligned} \mathsf{SD}((H, H(X_y)), (H, U_1)) &\leq 2^{(1-H_\infty(X_y)-2))/2} \\ &= 2^{(1-\log(d(n)))/2} = \operatorname{neg}(n). \quad \Box \end{aligned}$

Section 2

Proving GL – The Computational Case

Theorem 11 (Goldreich-Levin)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ as g(x,r) = (f(x),r).

If f is one-way, then $b(x, r) := \langle x, r \rangle_2$ is an hardcore predicate of g.

Theorem 11 (Goldreich-Levin)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ as g(x,r) = (f(x),r).

If f is one-way, then $b(x, r) := \langle x, r \rangle_2$ is an hardcore predicate of g.

Proof: Assume \exists PPT A, $p \in poly$ and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\Pr[\mathsf{A}(g(U_n, R_n)) = b(U_n, R_n)] \ge \frac{1}{2} + \frac{1}{p(n)}, \tag{1}$$

for any $n \in \mathcal{I}$, where U_n and R_n are uniformly (and independently) distributed over $\{0, 1\}^n$.

Theorem 11 (Goldreich-Levin)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ as g(x,r) = (f(x),r).

If f is one-way, then $b(x, r) := \langle x, r \rangle_2$ is an hardcore predicate of g.

Proof: Assume \exists PPT A, $p \in poly$ and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\Pr[\mathsf{A}(g(U_n, R_n)) = b(U_n, R_n)] \ge \frac{1}{2} + \frac{1}{p(n)}, \tag{1}$$

for any $n \in \mathcal{I}$, where U_n and R_n are uniformly (and independently) distributed over $\{0, 1\}^n$.

We show \exists PPT **B** and $q \in \text{poly}$ with

$$\Pr_{\boldsymbol{y} \leftarrow f(U_n)}[\mathsf{B}(\boldsymbol{y}) \in f^{-1}(\boldsymbol{y})] \geq \frac{1}{q(n)},\tag{2}$$

for every $n \in \mathcal{I}$.

Theorem 11 (Goldreich-Levin)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ as g(x,r) = (f(x),r).

If f is one-way, then $b(x, r) := \langle x, r \rangle_2$ is an hardcore predicate of g.

Proof: Assume \exists PPT A, $p \in poly$ and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\Pr[\mathsf{A}(g(U_n, R_n)) = b(U_n, R_n)] \ge \frac{1}{2} + \frac{1}{p(n)}, \tag{1}$$

for any $n \in \mathcal{I}$, where U_n and R_n are uniformly (and independently) distributed over $\{0, 1\}^n$.

We show \exists PPT **B** and $q \in poly$ with

$$\Pr_{\boldsymbol{y}\leftarrow f(U_n)}[\mathsf{B}(\boldsymbol{y})\in f^{-1}(\boldsymbol{y})]\geq \frac{1}{q(n)},\tag{2}$$

for every $n \in \mathcal{I}$. In the following fix $n \in \mathcal{I}$.

Claim 12

There exists a set $S \subseteq \{0, 1\}^n$ with

1. $\frac{|S|}{2^n} \ge \frac{1}{2p(n)}$, and

2. $\Pr[A(f(x), R_n) = b(x, R_n)]] \ge \frac{1}{2} + \frac{1}{2p(n)}, \forall x \in S.$

Claim 12

There exists a set $S \subseteq \{0, 1\}^n$ with

1. $\frac{|S|}{2^n} \ge \frac{1}{2p(n)}$, and

2. $\Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{2p(n)}, \forall x \in S.$

Proof:

Claim 12

There exists a set $S \subseteq \{0, 1\}^n$ with

1. $\frac{|S|}{2^n} \ge \frac{1}{2p(n)}$, and

2. $\Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{2p(n)}, \forall x \in S.$

Proof: Let $S := \{x \in \{0, 1\}^n : \Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{2p(n)}\}.$

Claim 12

There exists a set $S \subseteq \{0, 1\}^n$ with

1.
$$\frac{|S|}{2^n} \ge \frac{1}{2p(n)}$$
, and

2. $\Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{2p(n)}, \forall x \in S.$

Proof: Let $S := \{x \in \{0, 1\}^n : \Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{2p(n)}\}.$ $\Pr[A(g(U_n, R_n)) = b(U_n, R_n)] \le \Pr[U_n \notin S] \cdot \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in S]$

Claim 12

There exists a set $S \subseteq \{0, 1\}^n$ with

1.
$$\frac{|S|}{2^n} \ge \frac{1}{2p(n)}$$
, and

2. $\Pr[A(f(x), R_n) = b(x, R_n)]] \ge \frac{1}{2} + \frac{1}{2p(n)}, \forall x \in S.$

Proof: Let $S := \{x \in \{0, 1\}^n : \Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{2p(n)}\}.$ $\Pr[A(g(U_n, R_n)) = b(U_n, R_n)] \le \Pr[U_n \notin S] \cdot \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in S]$ $\le \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in S] \Box$

Claim 12

There exists a set $S \subseteq \{0, 1\}^n$ with

1.
$$\frac{|S|}{2^n} \ge \frac{1}{2p(n)}$$
, and

2. $\Pr[A(f(x), R_n) = b(x, R_n)]] \ge \frac{1}{2} + \frac{1}{2p(n)}, \forall x \in S.$

Proof: Let $S := \{x \in \{0, 1\}^n : \Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{2p(n)}\}.$ $\Pr[A(g(U_n, R_n)) = b(U_n, R_n)] \le \Pr[U_n \notin S] \cdot \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in S]$ $\le \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in S] \Box$

We conclude the theorem's proof showing exist $q \in poly$ and PPT B:

$$\Pr[\mathsf{B}(f(x)) \in f^{-1}(f(x)) \ge \frac{1}{q(n)}, \tag{3}$$

for every $x \in S$.

Benny Applebaum & Iftach Haitner (TAU)

Claim 12

There exists a set $S \subseteq \{0, 1\}^n$ with

1.
$$\frac{|S|}{2^n} \ge \frac{1}{2p(n)}$$
, and

2. $\Pr[A(f(x), R_n) = b(x, R_n)]] \ge \frac{1}{2} + \frac{1}{2p(n)}, \forall x \in S.$

Proof: Let $S := \{x \in \{0, 1\}^n : \Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{2p(n)}\}.$ $\Pr[A(g(U_n, R_n)) = b(U_n, R_n)] \le \Pr[U_n \notin S] \cdot \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in S]$ $\le \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in S]\Box$

We conclude the theorem's proof showing exist $q \in poly$ and PPT B:

$$\Pr[\mathsf{B}(f(x)) \in f^{-1}(f(x)) \ge \frac{1}{q(n)},$$
(3)

for every $x \in S$. In the following we fix $x \in S$.

$$\Pr\left[\mathsf{A}(f(x),R_n)=b(x,R_n)\right]=1$$

 $\Pr[A(f(x), R_n) = b(x, R_n)] = 1$ A(f(x),r) = b(x,r) $A(f(x),r) \neq b(x,r)$ In particular, $A(f(x), e^i) = b(x, e^i)$ for every $i \in [n]$, where $e^i = (\underbrace{0,\ldots,0}_{i},1,\underbrace{0,\ldots,0}_{i}).$

Hence, $x_i = \langle x, e^i \rangle_2$

 $\Pr[A(f(x), R_n) = b(x, R_n)] = 1$ A(f(x),r) = b(x,r) $A(f(x),r) \neq b(x,r)$ In particular, $A(f(x), e^i) = b(x, e^i)$ for every $i \in [n]$, where $e^i = (\underbrace{0,\ldots,0}_{i},1,\underbrace{0,\ldots,0}_{i}).$

Hence, $x_i = \langle x, e^i \rangle_2 = b(x, e^i) = A(f(x), e^i)$

 $\Pr[A(f(x), R_n) = b(x, R_n)] = 1$ A(f(x),r) = b(x,r) $A(f(x),r) \neq b(x,r)$ In particular, $A(f(x), e^i) = b(x, e^i)$ for every $i \in [n]$, where $e^i = (\underbrace{0,\ldots,0}_{i},1,\underbrace{0,\ldots,0}_{i}).$

Hence, $x_i = \langle x, e^i \rangle_2 = b(x, e^i) = A(f(x), e^i)$

Algorithm 13 (Inverter B on input y)

Return $(A(y, e^1), ..., A(y, e^n))$.

$\Pr\left[\mathsf{A}(f(x), \mathcal{R}_n) = b(x, \mathcal{R}_n)\right] \geq 1 - \operatorname{neg}(n)$

$\Pr\left[\mathsf{A}(f(x), \mathcal{R}_n) = b(x, \mathcal{R}_n)\right] \ge 1 - \operatorname{neg}(n)$

$\Pr\left[\mathsf{A}(f(x), \mathcal{R}_n) = b(x, \mathcal{R}_n)\right] \ge 1 - \operatorname{neg}(n)$

 $A(f(x),r) \neq b(x,r)$

$\Pr\left[\mathsf{A}(f(x), \mathcal{R}_n) = b(x, \mathcal{R}_n)\right] \ge 1 - \operatorname{neg}(n)$

$\Pr\left[\mathsf{A}(f(x), \mathcal{R}_n) = b(x, \mathcal{R}_n)\right] \ge 1 - \operatorname{neg}(n)$

 $\Pr\left[\mathsf{A}(f(x), R_n) = b(x, R_n)\right] \ge 1 - \operatorname{neg}(n)$

$$A(f(x),r) = b(x,r)$$
$$A(f(x),r) \neq b(x,r)$$

Fact 14

1. $b(x, w) \oplus b(x, y) = b(x, w \oplus y)$ for every $w, w, y \in \{0, 1\}^n$.

 e^{1} A(f(x),r) = b(x,r)

 $\Pr\left[\mathsf{A}(f(x), R_n) = b(x, R_n)\right] \ge 1 - \operatorname{neg}(n)$

$A(f(x),r) \neq b(x,r)$

Fact 14

1. $b(x, w) \oplus b(x, y) = b(x, w \oplus y)$ for every $w, w, y \in \{0, 1\}^n$.

2. $\forall r \in \{0,1\}^n$, the $rv(R_n \oplus r)$ is uniformly distributed over $\{0,1\}^n$.

 e^{1} A(f(x),r) = b(x,r) $A(f(x),r) \neq b(x,r)$

 $\Pr\left[\mathsf{A}(f(x), R_n) = b(x, R_n)\right] \ge 1 - \operatorname{neg}(n)$

Fact 14

1. $b(x, w) \oplus b(x, y) = b(x, w \oplus y)$ for every $w, w, y \in \{0, 1\}^n$.

2. $\forall r \in \{0,1\}^n$, the $rv(R_n \oplus r)$ is uniformly distributed over $\{0,1\}^n$.

Hence, $\forall i \in [n]$:

1. $x_i = b(x, e^i) = b(x, r) \oplus b(x, r \oplus e^i)$ for every $r \in \{0, 1\}^n$

 e^{1} A(f(x),r) = b(x,r) $A(f(x),r) \neq b(x,r)$

 $\Pr\left[\mathsf{A}(f(x), R_n) = b(x, R_n)\right] \ge 1 - \operatorname{neg}(n)$

Fact 14

1. $b(x, w) \oplus b(x, y) = b(x, w \oplus y)$ for every $w, w, y \in \{0, 1\}^n$.

2. $\forall r \in \{0,1\}^n$, the $rv(R_n \oplus r)$ is uniformly distributed over $\{0,1\}^n$.

Hence, $\forall i \in [n]$:

1. $x_i = b(x, e^i) = b(x, r) \oplus b(x, r \oplus e^i)$ for every $r \in \{0, 1\}^n$

2. $\Pr[A(f(x), R_n) = b(x, R_n) \land A(f(x), R_n \oplus e^i) = b(x, R_n \oplus e^i)] \ge 1 - \operatorname{neg}(n)$

 e^{1} A(f(x),r) = b(x,r) $A(f(x),r) \neq b(x,r)$

 $\Pr\left[\mathsf{A}(f(x), R_n) = b(x, R_n)\right] \ge 1 - \operatorname{neg}(n)$

Fact 14

1. $b(x, w) \oplus b(x, y) = b(x, w \oplus y)$ for every $w, w, y \in \{0, 1\}^n$.

2. $\forall r \in \{0,1\}^n$, the $rv(R_n \oplus r)$ is uniformly distributed over $\{0,1\}^n$.

Hence, $\forall i \in [n]$:

- **1.** $x_i = b(x, e^i) = b(x, r) \oplus b(x, r \oplus e^i)$ for every $r \in \{0, 1\}^n$
- **2.** $\Pr[A(f(x), R_n) = b(x, R_n) \land A(f(x), R_n \oplus e^i) = b(x, R_n \oplus e^i)] \ge 1 \operatorname{neg}(n)$

Algorithm 15 (Inverter B on input y)

Return $(A(y, R_n) \oplus A(y, R_n \oplus e^1)), \dots, A(y, R_n) \oplus A(y, R_n \oplus e^n)).$

Proving Fact 14

1. For $w, w, y \in \{0, 1\}^n$:

$$b(x, y) \oplus b(x, w) = \left(\bigoplus_{i=1^n} x_i \cdot y_i\right) \oplus \left(\bigoplus_{i=1^n} x_i \cdot w_i\right)$$
$$= \bigoplus_{i=1^n} x_i \cdot (y_i \oplus w_i)$$
$$= b(x, y \oplus w)$$

Proving Fact 14

1. For $w, w, y \in \{0, 1\}^n$:

$$b(x, y) \oplus b(x, w) = \left(\bigoplus_{i=1^n} x_i \cdot y_i\right) \oplus \left(\bigoplus_{i=1^n} x_i \cdot w_i\right)$$
$$= \bigoplus_{i=1^n} x_i \cdot (y_i \oplus w_i)$$
$$= b(x, y \oplus w)$$

2. For $r, y \in \{0, 1\}^n$:

$$\Pr[R_n \oplus r = y] = \Pr[R_n = y \oplus r] = 2^{-n}$$

 $\Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{3}{4} + \frac{1}{q(n)}$

1. For every $i \in [n]$

1.1 Sample $r^1, \ldots, r^v \in \{0, 1\}^n$ uniformly at random

- **1.2** Let $m_i = \text{maj}_{j \in [v]} \{ (A(y, r^j) \oplus A(y, r^j \oplus e^i)) \}$
- **2.** Output (*m*₁,...,*m*_n)

The following claim holds for "large enough" $v = v(n) \in poly(n)$.

The following claim holds for "large enough" $v = v(n) \in poly(n)$.

Claim 17

For every $i \in [n]$, it holds that $\Pr[m_i = x_i] \ge 1 - \operatorname{neg}(n)$.

The following claim holds for "large enough" $v = v(n) \in poly(n)$.

Claim 17

For every $i \in [n]$, it holds that $\Pr[m_i = x_i] \ge 1 - \operatorname{neg}(n)$.

Proof: For $j \in [v]$, let the indicator rv W^j be 1, iff $A(f(x), r^j) \oplus A(f(x), r^j \oplus e^i) = x_i$.

The following claim holds for "large enough" $v = v(n) \in poly(n)$.

Claim 17

For every $i \in [n]$, it holds that $\Pr[m_i = x_i] \ge 1 - \operatorname{neg}(n)$.

Proof: For $j \in [v]$, let the indicator rv W^j be 1, iff $A(f(x), r^j) \oplus A(f(x), r^j \oplus e^j) = x_j$. We want to lowerbound $\Pr\left[\sum_{j=1}^{v} W^j > \frac{v}{2}\right]$.

The following claim holds for "large enough" $v = v(n) \in poly(n)$.

Claim 17

For every $i \in [n]$, it holds that $Pr[m_i = x_i] \ge 1 - neg(n)$.

Proof: For $j \in [v]$, let the indicator $v W^j$ be 1, iff $A(f(x), r^j) \oplus A(f(x), r^j \oplus e^i) = x_i$. We want to lowerbound $\Pr\left[\sum_{j=1}^{v} W^j > \frac{v}{2}\right]$.

▶ The W^j are iids and $E[W^j] \ge \frac{1}{2} + \frac{2}{q(n)}$ for every $j \in [v]$

The following claim holds for "large enough" $v = v(n) \in poly(n)$.

Claim 17

For every $i \in [n]$, it holds that $Pr[m_i = x_i] \ge 1 - neg(n)$.

Proof: For $j \in [v]$, let the indicator $v W^j$ be 1, iff $A(f(x), r^j) \oplus A(f(x), r^j \oplus e^i) = x_i$. We want to lowerbound $\Pr\left[\sum_{j=1}^{v} W^j > \frac{v}{2}\right]$.

► The W^j are iids and $E[W^j] \ge \frac{1}{2} + \frac{2}{q(n)}$ for every $j \in [v]$

Lemma 18 (Hoeffding's inequality) Let X^1, \ldots, X^v be iids over [0, 1] with expectation μ . Then, $\Pr[|\frac{\sum_{j=1}^v X^j}{v} - \mu| \ge \varepsilon] \le 2 \cdot \exp(-2\varepsilon^2 v)$ for every $\varepsilon > 0$.

The following claim holds for "large enough" $v = v(n) \in poly(n)$.

Claim 17

For every $i \in [n]$, it holds that $Pr[m_i = x_i] \ge 1 - neg(n)$.

Proof: For $j \in [v]$, let the indicator $v W^j$ be 1, iff $A(f(x), r^j) \oplus A(f(x), r^j \oplus e^i) = x_i$. We want to lowerbound $\Pr\left[\sum_{j=1}^{v} W^j > \frac{v}{2}\right]$.

▶ The W^j are iids and $E[W^j] \ge \frac{1}{2} + \frac{2}{q(n)}$ for every $j \in [v]$

Lemma 18 (Hoeffding's inequality) Let X^1, \ldots, X^v be iids over [0, 1] with expectation μ . Then, $\Pr[|\frac{\sum_{j=i}^v X^j}{v} - \mu| \ge \varepsilon] \le 2 \cdot \exp(-2\varepsilon^2 v)$ for every $\varepsilon > 0$.

We complete the proof taking $X^j = W^j$, $\varepsilon = 1/4q(n)$ and $v \in \omega(\log(n) \cdot q(n)^2)$.

 $\Pr\left[\mathsf{A}(f(x), R_n) = b(x, R_n)\right] \ge \frac{1}{2} + \frac{1}{q(n)}$

 $\Pr\left[\mathsf{A}(f(x), R_n) = b(x, R_n)\right] \ge \frac{1}{2} + \frac{1}{q(n)}$

What goes wrong?

 $\Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{q(n)}$

▶ What goes wrong? $\Pr[A(f(x), R_n) \oplus A(f(x), R_n \oplus e^i) = x_i] \ge \frac{2}{q(n)}$

 $\Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{q(n)}$

What goes wrong?

 $\Pr[A(f(x), R_n) \oplus A(f(x), R_n \oplus e^i) = x_i] \geq \frac{2}{q(n)}$

Hence, using a random guess does better than using A :-<</p>

 $\Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{q(n)}$

What goes wrong?

 $\Pr[A(f(x), R_n) \oplus A(f(x), R_n \oplus e^i) = x_i] \ge \frac{2}{q(n)}$

- Hence, using a random guess does better than using A :-<</p>
- ► Idea: guess the values of {b(x, r¹),...,b(x, r^v)} (instead of calling {A(f(x), r¹),...,A(f(x), r^v)})

 $\Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{q(n)}$

What goes wrong?

 $\Pr[A(f(x), R_n) \oplus A(f(x), R_n \oplus e^i) = x_i] \ge \frac{2}{q(n)}$

- Hence, using a random guess does better than using A :-<</p>
- ► Idea: guess the values of {b(x, r¹),..., b(x, r^v)} (instead of calling {A(f(x), r¹),..., A(f(x), r^v)})

Problem: negligible success probability

 $\Pr\left[\mathsf{A}(f(x), \mathcal{R}_n) = b(x, \mathcal{R}_n)\right] \ge \frac{1}{2} + \frac{1}{q(n)}$

What goes wrong?

 $\Pr[A(f(x), R_n) \oplus A(f(x), R_n \oplus e^i) = x_i] \ge \frac{2}{q(n)}$

- Hence, using a random guess does better than using A :-<</p>
- ► Idea: guess the values of {b(x, r¹),..., b(x, r^v)} (instead of calling {A(f(x), r¹),..., A(f(x), r^v)})

Problem: negligible success probability

Solution: choose the samples in a correlated manner

Fix $\ell = \ell(n)$ (will be $O(\log n)$) and set $v = 2^{\ell} - 1$.

Fix $\ell = \ell(n)$ (will be $O(\log n)$) and set $v = 2^{\ell} - 1$.

- Fix $\ell = \ell(n)$ (will be $O(\log n)$) and set $v = 2^{\ell} 1$.
- In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty choice

- Fix $\ell = \ell(n)$ (will be $O(\log n)$) and set $v = 2^{\ell} 1$.
- In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty choice

- Fix $\ell = \ell(n)$ (will be $O(\log n)$) and set $v = 2^{\ell} 1$.
- In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty choice

Algorithm 19 (Inverter B on $y = f(x) \in \{0, 1\}^n$)

- **1.** Sample uniformly (and independently) $t^1, \ldots, t^{\ell} \in \{0, 1\}^n$
- **2.** Guess the value of $\{b(x, t^i)\}_{i \in [\ell]}$
- **3.** For all $\mathcal{L} \subseteq [\ell]$: set $r^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} t^i$ and compute $b(x, r^{\mathcal{L}}) = \bigoplus_{i \in \mathcal{L}} b(x, t^i)$.
- 4. For all $i \in [n]$, let $m_i = \operatorname{maj}_{\mathcal{L} \subseteq [\ell]} \{ \mathsf{A}(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) \}$
- **5.** Output $(m_1, ..., m_n)$

- Fix $\ell = \ell(n)$ (will be $O(\log n)$) and set $v = 2^{\ell} 1$.
- In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty choice

Algorithm 19 (Inverter B on $y = f(x) \in \{0, 1\}^n$)

- **1.** Sample uniformly (and independently) $t^1, \ldots, t^{\ell} \in \{0, 1\}^n$
- **2.** Guess the value of $\{b(x, t^i)\}_{i \in [\ell]}$
- **3.** For all $\mathcal{L} \subseteq [\ell]$: set $r^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} t^i$ and compute $b(x, r^{\mathcal{L}}) = \bigoplus_{i \in \mathcal{L}} b(x, t^i)$.
- **4.** For all $i \in [n]$, let $m_i = \operatorname{maj}_{\mathcal{L} \subseteq [\ell]} \{ \mathsf{A}(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) \}$
- 5. Output (*m*₁,...,*m*_n)
- Fix $i \in [n]$, and let $W^{\mathcal{L}}$ be 1 iff $A(f(x), r^{\mathcal{L}} \oplus e^{i}) \oplus b(x, r^{\mathcal{L}}) = x_{i}$.

- Fix $\ell = \ell(n)$ (will be $O(\log n)$) and set $v = 2^{\ell} 1$.
- In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty choice

Algorithm 19 (Inverter B on $y = f(x) \in \{0, 1\}^n$)

- **1.** Sample uniformly (and independently) $t^1, \ldots, t^{\ell} \in \{0, 1\}^n$
- **2.** Guess the value of $\{b(x, t^i)\}_{i \in [\ell]}$
- **3.** For all $\mathcal{L} \subseteq [\ell]$: set $r^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} t^i$ and compute $b(x, r^{\mathcal{L}}) = \bigoplus_{i \in \mathcal{L}} b(x, t^i)$.
- 4. For all $i \in [n]$, let $m_i = \operatorname{maj}_{\mathcal{L} \subseteq [\ell]} \{ \mathsf{A}(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) \}$
- 5. Output (*m*₁,...,*m*_n)
- Fix $i \in [n]$, and let $W^{\mathcal{L}}$ be 1 iff $A(f(x), r^{\mathcal{L}} \oplus e^{i}) \oplus b(x, r^{\mathcal{L}}) = x_{i}$.

• We want to lowerbound $\Pr\left[\sum_{\mathcal{L}\subseteq[\ell]} W^{\mathcal{L}} > \frac{v}{2}\right]$

- Fix $\ell = \ell(n)$ (will be $O(\log n)$) and set $v = 2^{\ell} 1$.
- In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty choice

Algorithm 19 (Inverter B on $y = f(x) \in \{0, 1\}^n$)

- **1.** Sample uniformly (and independently) $t^1, \ldots, t^\ell \in \{0, 1\}^n$
- **2.** Guess the value of $\{b(x, t^i)\}_{i \in [\ell]}$
- **3.** For all $\mathcal{L} \subseteq [\ell]$: set $r^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} t^i$ and compute $b(x, r^{\mathcal{L}}) = \bigoplus_{i \in \mathcal{L}} b(x, t^i)$.
- 4. For all $i \in [n]$, let $m_i = \operatorname{maj}_{\mathcal{L} \subseteq [\ell]} \{ \mathsf{A}(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) \}$
- **5.** Output (*m*₁,..., *m*_n)
- Fix $i \in [n]$, and let $W^{\mathcal{L}}$ be 1 iff $A(f(x), r^{\mathcal{L}} \oplus e^{i}) \oplus b(x, r^{\mathcal{L}}) = x_{i}$.
- We want to lowerbound $\Pr\left[\sum_{\mathcal{L}\subseteq[\ell]} W^{\mathcal{L}} > \frac{v}{2}\right]$
- Problem: the W^L's are dependent!

- **1.** Let T^1, \ldots, T^ℓ be iid and uniform over $\{0, 1\}^n$.
- **2.** For $\mathcal{L} \subseteq [\ell]$, let $\mathcal{R}^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} \mathcal{T}^i$.

1. Let T^1, \ldots, T^ℓ be iid and uniform over $\{0, 1\}^n$.

2. For $\mathcal{L} \subseteq [\ell]$, let $\mathcal{R}^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} \mathcal{T}^i$.

Claim 20

1. $\forall \mathcal{L} \subseteq [\ell], R^{\mathcal{L}}$ is uniformly distributed over $\{0, 1\}^n$.

2. $\forall w, w' \in \{0, 1\}^n$ and $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that $\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w'] = 2^{-2n}$.

1. Let T^1, \ldots, T^ℓ be iid and uniform over $\{0, 1\}^n$.

2. For $\mathcal{L} \subseteq [\ell]$, let $\mathcal{R}^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} \mathcal{T}^i$.

Claim 20

1. $\forall \mathcal{L} \subseteq [\ell], R^{\mathcal{L}}$ is uniformly distributed over $\{0, 1\}^n$.

2. $\forall w, w' \in \{0, 1\}^n$ and $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that $\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w'] = 2^{-2n}$.

Proof:

1. Let T^1, \ldots, T^ℓ be iid and uniform over $\{0, 1\}^n$.

2. For $\mathcal{L} \subseteq [\ell]$, let $\mathcal{R}^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} \mathcal{T}^i$.

Claim 20

1. $\forall \mathcal{L} \subseteq [\ell], \mathbb{R}^{\mathcal{L}}$ is uniformly distributed over $\{0, 1\}^n$.

2. $\forall w, w' \in \{0, 1\}^n$ and $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that $\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w'] = 2^{-2n}$.

Proof: (1) is clear,

1. Let T^1, \ldots, T^ℓ be iid and uniform over $\{0, 1\}^n$.

2. For $\mathcal{L} \subseteq [\ell]$, let $\mathcal{R}^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} \mathcal{T}^i$.

Claim 20

1. $\forall \mathcal{L} \subseteq [\ell], R^{\mathcal{L}}$ is uniformly distributed over $\{0, 1\}^n$.

2. $\forall w, w' \in \{0, 1\}^n$ and $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that $\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w'] = 2^{-2n}$.

Proof: (1) is clear, we prove (2) in the next slide.

$$\Pr[\mathbf{R}^{\mathcal{L}} = \mathbf{w} \land \mathbf{R}^{\mathcal{L}'} = \mathbf{w}']$$

=
$$\mathop{\mathsf{E}}_{(t^2, \dots, t^\ell) \leftarrow \{0, 1\}^{(\ell-1)n}} \left[\Pr[\mathbf{R}^{\mathcal{L}} = \mathbf{w} \land \mathbf{R}^{\mathcal{L}'} = \mathbf{w}' \mid (\mathbf{T}^2, \dots, \mathbf{T}^\ell) = (t^2, \dots, t^\ell)] \right]$$

$$\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w']$$

$$= \underset{(t^{2},...,t^{\ell}) \leftarrow \{0,1\}^{(\ell-1)n}}{\mathsf{E}} \left[\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w' \mid (T^{2},...,T^{\ell}) = (t^{2},...,t^{\ell})]\right]$$

$$= \underset{(t^{2},...,t^{\ell}): \ (\bigoplus_{i \in \mathcal{L}} t^{i}) = w}{\sum} \underset{\mathsf{Pr}[R^{\mathcal{L}'} = w' \mid (T^{2},...,T^{\ell}) = (t^{2},...,t^{\ell})]}{\mathsf{Pr}[R^{\mathcal{L}'} = w' \mid (T^{2},...,T^{\ell}) = (t^{2},...,t^{\ell})]}$$

$$\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w']$$

$$= \underset{(t^{2},...,t^{\ell}) \leftarrow \{0,1\}^{(\ell-1)n}}{\mathsf{E}} \left[\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w' \mid (T^{2},...,T^{\ell}) = (t^{2},...,t^{\ell})]\right]$$

$$= \underset{(t^{2},...,t^{\ell}): (\bigoplus_{i \in \mathcal{L}} t^{i}) = w}{\mathsf{Pr}[(T^{2},...,T^{\ell}) = (t^{2},...,t^{\ell})]}$$

$$= \underset{(t^{2},...,t^{\ell}): (\bigoplus_{i \in \mathcal{L}} t^{i}) = w}{\mathsf{Pr}[(T^{2},...,T^{\ell}) = (t^{2},...,t^{\ell})]}$$

Proving Fact 20(2)

Assume wlg. that $1 \in (\mathcal{L}' \setminus \mathcal{L})$.

$$\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w']$$

$$= \mathop{\mathsf{E}}_{(t^{2},...,t^{\ell}) \leftarrow \{0,1\}^{(\ell-1)n}} \left[\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w' \mid (T^{2},...,T^{\ell}) = (t^{2},...,t^{\ell})]\right]$$

$$= \sum_{(t^{2},...,t^{\ell}): \ (\bigoplus_{i \in \mathcal{L}} t^{i}) = w} \Pr[(T^{2},...,T^{\ell}) = (t^{2},...,t^{\ell})]$$

$$= \sum_{(t^{2},...,t^{\ell}): \ (\bigoplus_{i \in \mathcal{L}} t^{i}) = w} \Pr[(T^{2},...,T^{\ell}) = (t^{2},...,t^{\ell})]$$

$$= \sum_{(t^{2},...,t^{\ell}): \ (\bigoplus_{i \in \mathcal{L}} t^{i}) = w} \Pr[(T^{2},...,T^{\ell}) = (t^{2},...,t^{\ell})] \cdot 2^{-n}$$

$$= 2^{-n} \cdot 2^{-n}$$

Proving Fact 20(2)

Assume wlg. that $1 \in (\mathcal{L}' \setminus \mathcal{L})$.

$$\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w']$$

$$= \underset{(t^{2},...,t^{\ell}) \leftarrow \{0,1\}^{(\ell-1)n}}{\operatorname{E}} \left[\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w' \mid (T^{2},...,T^{\ell}) = (t^{2},...,t^{\ell})\right]$$

$$= \underset{(t^{2},...,t^{\ell}): (\bigoplus_{i \in \mathcal{L}} t^{i}) = w}{\operatorname{Pr}[(T^{2},...,T^{\ell}) = (t^{2},...,t^{\ell})]}$$

$$= \underset{(t^{2},...,t^{\ell}): (\bigoplus_{i \in \mathcal{L}} t^{i}) = w}{\operatorname{Pr}[(T^{2},...,T^{\ell}) = (t^{2},...,t^{\ell})]}$$

$$= \underset{(t^{2},...,t^{\ell}): (\bigoplus_{i \in \mathcal{L}} t^{i}) = w}{\operatorname{Pr}[(T^{2},...,T^{\ell}) = (t^{2},...,t^{\ell})] \cdot 2^{-n}}$$

$$= 2^{-n} \cdot 2^{-n} = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w'].$$

Proving Fact 20(2)

Assume wlg. that $1 \in (\mathcal{L}' \setminus \mathcal{L})$.

$$\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w']$$

$$= \underset{(t^{2},...,t^{\ell}) \leftarrow \{0,1\}^{(\ell-1)n}}{\mathsf{E}} \left[\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w' \mid (T^{2},...,T^{\ell}) = (t^{2},...,t^{\ell})]\right]$$

$$= \underset{(t^{2},...,t^{\ell}): (\bigoplus_{i \in \mathcal{L}} t^{i}) = w}{\mathsf{Pr}[(T^{2},...,T^{\ell}) = (t^{2},...,t^{\ell})]}$$

$$= \underset{(t^{2},...,t^{\ell}): (\bigoplus_{i \in \mathcal{L}} t^{i}) = w}{\mathsf{Pr}[(T^{2},...,T^{\ell}) = (t^{2},...,t^{\ell})]}$$

$$= \underset{(t^{2},...,t^{\ell}): (\bigoplus_{i \in \mathcal{L}} t^{i}) = w}{\mathsf{Pr}[(T^{2},...,T^{\ell}) = (t^{2},...,t^{\ell})] \cdot 2^{-n}}$$

$$= 2^{-n} \cdot 2^{-n} = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w'].$$

Definition 21 (pairwise independent random variables)

A sequence of random variables X^1, \ldots, X^{ν} is pairwise independent, if $\forall i \neq j \in [\nu]$ and $\forall a, b$, it holds that

 $\Pr[X^i = a \land X^j = b] = \Pr[X^i = a] \cdot \Pr[X^j = b]$

Definition 21 (pairwise independent random variables)

A sequence of random variables X^1, \ldots, X^{ν} is pairwise independent, if $\forall i \neq j \in [\nu]$ and $\forall a, b$, it holds that

 $\Pr[X^i = a \land X^j = b] = \Pr[X^i = a] \cdot \Pr[X^j = b]$

By Claim 20, r^L and r^{L'} (chosen by B) are pairwise independent for every L ≠ L' ⊆ [ℓ].

Definition 21 (pairwise independent random variables)

A sequence of random variables X^1, \ldots, X^{ν} is pairwise independent, if $\forall i \neq j \in [\nu]$ and $\forall a, b$, it holds that

 $\Pr[X^i = a \land X^j = b] = \Pr[X^i = a] \cdot \Pr[X^j = b]$

- By Claim 20, r^L and r^{L'} (chosen by B) are pairwise independent for every L ≠ L' ⊆ [ℓ].
- ► Hence, also $W^{\mathcal{L}}$ and $W^{\mathcal{L}'}$ are. (Recall, $W^{\mathcal{L}}$ is 1 iff $A(f(x), r^{\mathcal{L}} \oplus e^{i}) \oplus b(x, r^{\mathcal{L}}) = x_{i}$)

Definition 21 (pairwise independent random variables)

A sequence of random variables X^1, \ldots, X^{ν} is pairwise independent, if $\forall i \neq j \in [\nu]$ and $\forall a, b$, it holds that

 $\Pr[X^i = a \land X^j = b] = \Pr[X^i = a] \cdot \Pr[X^j = b]$

- By Claim 20, r^L and r^{L'} (chosen by B) are pairwise independent for every L ≠ L' ⊆ [ℓ].
- ► Hence, also $W^{\mathcal{L}}$ and $W^{\mathcal{L}'}$ are. (Recall, $W^{\mathcal{L}}$ is 1 iff $A(f(x), r^{\mathcal{L}} \oplus e^{i}) \oplus b(x, r^{\mathcal{L}}) = x_{i}$)

Definition 21 (pairwise independent random variables)

A sequence of random variables X^1, \ldots, X^{ν} is pairwise independent, if $\forall i \neq j \in [\nu]$ and $\forall a, b$, it holds that

 $\Pr[X^i = a \land X^j = b] = \Pr[X^i = a] \cdot \Pr[X^j = b]$

- By Claim 20, r^L and r^{L'} (chosen by B) are pairwise independent for every L ≠ L' ⊆ [ℓ].
- ► Hence, also W^L and W^{L'} are. (Recall, W^L is 1 iff A(f(x), r^L ⊕ eⁱ) ⊕ b(x, r^L) = x_i)

Lemma 22 (Chebyshev's inequality)

Let X^1, \ldots, X^{ν} be pairwise-independent random variables with expectation μ and variance σ^2 . Then, for every $\varepsilon > 0$,

$$\Pr\left[\left|\frac{\sum_{j=1}^{\nu} X^{j}}{\nu} - \mu\right| \ge \varepsilon\right] \le \frac{\sigma^{2}}{\varepsilon^{2} \nu}$$

Assuming that B always guesses $\{b(x, t^i)\}$ correctly, then for every $\mathcal{L} \subseteq [\ell]$

Assuming that B always guesses $\{b(x, t^i)\}$ correctly, then for every $\mathcal{L} \subseteq [\ell]$

► $\mathsf{E}[W^{\mathcal{L}}] \ge \frac{1}{2} + \frac{1}{q(n)}$

Assuming that B always guesses $\{b(x, t^i)\}$ correctly, then for every $\mathcal{L} \subseteq [\ell]$

- $\mathsf{E}[W^{\mathcal{L}}] \geq \frac{1}{2} + \frac{1}{q(n)}$
- $\operatorname{Var}(W^{\mathcal{L}}) := \operatorname{E}[\widetilde{W^{\mathcal{L}}}]^2 \operatorname{E}[(W^{\mathcal{L}})^2] \leq 1$

Assuming that B always guesses $\{b(x, t^i)\}$ correctly, then for every $\mathcal{L} \subseteq [\ell]$

- $\mathsf{E}[W^{\mathcal{L}}] \geq \frac{1}{2} + \frac{1}{q(n)}$
- $\operatorname{Var}(W^{\mathcal{L}}) := \operatorname{E}[\widetilde{W^{\mathcal{L}}}]^2 \operatorname{E}[(W^{\mathcal{L}})^2] \leq 1$

Assuming that B always guesses $\{b(x, t^i)\}$ correctly, then for every $\mathcal{L} \subseteq [\ell]$

- ► $\mathsf{E}[W^{\mathcal{L}}] \ge \frac{1}{2} + \frac{1}{q(n)}$
- $\operatorname{Var}(W^{\mathcal{L}}) := \operatorname{E}[\widetilde{W^{\mathcal{L}}}]^2 \operatorname{E}[(W^{\mathcal{L}})^2] \leq 1$

Taking $\varepsilon = 1/2q(n)$ and $v = 2n/\varepsilon^2$ (i.e., $\ell = \lceil \log(2n/\varepsilon^2) \rceil$), Lemma 22 yields that

$$\Pr[m_i = x_i] = \Pr\left[\frac{\sum_{\mathcal{L} \subseteq [\ell]} W^{\mathcal{L}}}{v} > \frac{1}{2}\right] \ge 1 - \frac{1}{2n}$$
(4)

Assuming that B always guesses $\{b(x, t^i)\}$ correctly, then for every $\mathcal{L} \subseteq [\ell]$

- ► $\mathsf{E}[W^{\mathcal{L}}] \ge \frac{1}{2} + \frac{1}{q(n)}$
- $\operatorname{Var}(W^{\mathcal{L}}) := \operatorname{E}[\widetilde{W^{\mathcal{L}}}]^2 \operatorname{E}[(W^{\mathcal{L}})^2] \leq 1$

Taking $\varepsilon = 1/2q(n)$ and $v = 2n/\varepsilon^2$ (i.e., $\ell = \lceil \log(2n/\varepsilon^2) \rceil$), Lemma 22 yields that

$$\Pr[m_i = x_i] = \Pr\left[\frac{\sum_{\mathcal{L} \subseteq [\ell]} W^{\mathcal{L}}}{v} > \frac{1}{2}\right] \ge 1 - \frac{1}{2n}$$
(4)

Assuming that B always guesses $\{b(x, t^i)\}$ correctly, then for every $\mathcal{L} \subseteq [\ell]$

- ► $\mathsf{E}[W^{\mathcal{L}}] \ge \frac{1}{2} + \frac{1}{q(n)}$
- $\operatorname{Var}(W^{\mathcal{L}}) := \operatorname{E}[\widetilde{W^{\mathcal{L}}}]^2 \operatorname{E}[(W^{\mathcal{L}})^2] \leq 1$

Taking $\varepsilon = 1/2q(n)$ and $v = 2n/\varepsilon^2$ (i.e., $\ell = \lfloor \log(2n/\varepsilon^2) \rfloor$), Lemma 22 yields that

$$\Pr[m_{i} = x_{i}] = \Pr\left[\frac{\sum_{\mathcal{L} \subseteq [\ell]} W^{\mathcal{L}}}{v} > \frac{1}{2}\right] \ge 1 - \frac{1}{2n}$$
(4)

Hence, by a union bound, B outputs x with probability $\frac{1}{2}$.

Assuming that B always guesses $\{b(x, t^i)\}$ correctly, then for every $\mathcal{L} \subseteq [\ell]$

- ► $\mathsf{E}[W^{\mathcal{L}}] \ge \frac{1}{2} + \frac{1}{q(n)}$
- $\operatorname{Var}(W^{\mathcal{L}}) := \operatorname{E}[\widetilde{W^{\mathcal{L}}}]^2 \operatorname{E}[(W^{\mathcal{L}})^2] \leq 1$

Taking $\varepsilon = 1/2q(n)$ and $v = 2n/\varepsilon^2$ (i.e., $\ell = \lfloor \log(2n/\varepsilon^2) \rfloor$), Lemma 22 yields that

$$\Pr[m_{i} = x_{i}] = \Pr\left[\frac{\sum_{\mathcal{L} \subseteq [\ell]} W^{\mathcal{L}}}{v} > \frac{1}{2}\right] \ge 1 - \frac{1}{2n}$$
(4)

Hence, by a union bound, B outputs x with probability $\frac{1}{2}$.

Assuming that B always guesses $\{b(x, t^i)\}$ correctly, then for every $\mathcal{L} \subseteq [\ell]$

- ► $\mathsf{E}[W^{\mathcal{L}}] \ge \frac{1}{2} + \frac{1}{q(n)}$
- $\operatorname{Var}(W^{\mathcal{L}}) := \operatorname{E}[\widetilde{W^{\mathcal{L}}}]^2 \operatorname{E}[(W^{\mathcal{L}})^2] \leq 1$

Taking $\varepsilon = 1/2q(n)$ and $v = 2n/\varepsilon^2$ (i.e., $\ell = \lceil \log(2n/\varepsilon^2) \rceil$), Lemma 22 yields that

$$\Pr[m_i = x_i] = \Pr\left[\frac{\sum_{\mathcal{L} \subseteq [\ell]} W^{\mathcal{L}}}{v} > \frac{1}{2}\right] \ge 1 - \frac{1}{2n}$$
(4)

Hence, by a union bound, B outputs x with probability $\frac{1}{2}$.

Taking the guessing into account, yields that B outputs x with probability at least $2^{-\ell}/2 \in \Omega(n/q(n)^2)$.

Hardcore functions:

Similar ideas allows to output log n "pseudorandom bits"

Hardcore functions:

Similar ideas allows to output log *n* "pseudorandom bits"

Alternative proof for the LHL:

Let X be a rv with over $\{0,1\}^n$ with $H_{\infty}(X) \ge t$, and assume $SD((R_n, \langle R_n, X \rangle_2), (R_n, U_1)) > \alpha = 2^{-c \cdot t}$ for some universal c > 0.

Hardcore functions:

Similar ideas allows to output log *n* "pseudorandom bits"

Alternative proof for the LHL:

Let X be a rv with over $\{0,1\}^n$ with $H_{\infty}(X) \ge t$, and assume $SD((R_n, \langle R_n, X \rangle_2), (R_n, U_1)) > \alpha = 2^{-c \cdot t}$ for some universal c > 0.

Hardcore functions:

Similar ideas allows to output log n "pseudorandom bits"

Alternative proof for the LHL:

Let X be a rv with over $\{0,1\}^n$ with $H_{\infty}(X) \ge t$, and assume $SD((R_n, \langle R_n, X \rangle_2), (R_n, U_1)) > \alpha = 2^{-c \cdot t}$ for some universal c > 0.

 $\implies \text{Exists (a possibly inefficient) algorithm } D \text{ that distinguishes} \\ (R_n, \langle R_n, X \rangle_2) \text{ from } (R_n, U_1) \text{ with advantage } \alpha$

Hardcore functions:

Similar ideas allows to output log n "pseudorandom bits"

Alternative proof for the LHL:

Let X be a rv with over $\{0,1\}^n$ with $H_{\infty}(X) \ge t$, and assume $SD((R_n, \langle R_n, X \rangle_2), (R_n, U_1)) > \alpha = 2^{-c \cdot t}$ for some universal c > 0.

- $\implies \text{Exists (a possibly inefficient) algorithm$ *D* $that distinguishes <math>(R_n, \langle R_n, X \rangle_2)$ from (R_n, U_1) with advantage α
- \implies Exists algorithm A that predicts $\langle R_n, X \rangle_2$ given R_n with prob $\frac{1}{2} + \alpha$

Hardcore functions:

Similar ideas allows to output log n "pseudorandom bits"

Alternative proof for the LHL:

Let X be a rv with over $\{0,1\}^n$ with $H_{\infty}(X) \ge t$, and assume $SD((R_n, \langle R_n, X \rangle_2), (R_n, U_1)) > \alpha = 2^{-c \cdot t}$ for some universal c > 0.

- $\implies \text{Exists (a possibly inefficient) algorithm } D \text{ that distinguishes} \\ (R_n, \langle R_n, X \rangle_2) \text{ from } (R_n, U_1) \text{ with advantage } \alpha$
- \implies Exists algorithm A that predicts $\langle R_n, X \rangle_2$ given R_n with prob $\frac{1}{2} + \alpha$
- \implies (by GL) Exists algorithm B that guesses X from nothing, with prob $\alpha^{O(1)} > 2^{-t}$

List decoding:

An encoder $C: \{0,1\}^n \mapsto \{0,1\}^m$ and a decoder D, such that the following holds for any $x \in \{0,1\}^n$ and c of hamming distance $\frac{1}{2} - \delta$ from C(x):

List decoding:

An encoder $C: \{0,1\}^n \mapsto \{0,1\}^m$ and a decoder D, such that the following holds for any $x \in \{0,1\}^n$ and c of hamming distance $\frac{1}{2} - \delta$ from C(x):

List decoding:

An encoder $C: \{0,1\}^n \mapsto \{0,1\}^m$ and a decoder D, such that the following holds for any $x \in \{0,1\}^n$ and c of hamming distance $\frac{1}{2} - \delta$ from C(x):

 $D(c, \delta)$ outputs a list of size at most $poly(1/\delta)$ that whp. contains x

List decoding:

An encoder $C: \{0,1\}^n \mapsto \{0,1\}^m$ and a decoder D, such that the following holds for any $x \in \{0,1\}^n$ and c of hamming distance $\frac{1}{2} - \delta$ from C(x):

 $D(c, \delta)$ outputs a list of size at most $poly(1/\delta)$ that whp. contains x

The code we used here is known as the Hadamard code

List decoding:

An encoder $C: \{0,1\}^n \mapsto \{0,1\}^m$ and a decoder D, such that the following holds for any $x \in \{0,1\}^n$ and c of hamming distance $\frac{1}{2} - \delta$ from C(x):

 $D(c, \delta)$ outputs a list of size at most $poly(1/\delta)$ that whp. contains x

The code we used here is known as the Hadamard code

LPN - learning parity with noise:

Find x given polynomially many samples of $\langle x, R_n \rangle_2 + N$, where $\Pr[N = 1] \leq \frac{1}{2} - \delta$.

List decoding:

An encoder $C: \{0,1\}^n \mapsto \{0,1\}^m$ and a decoder D, such that the following holds for any $x \in \{0,1\}^n$ and c of hamming distance $\frac{1}{2} - \delta$ from C(x):

 $D(c, \delta)$ outputs a list of size at most $poly(1/\delta)$ that whp. contains x

The code we used here is known as the Hadamard code

LPN - learning parity with noise:

Find *x* given polynomially many samples of $\langle x, R_n \rangle_2 + N$, where $\Pr[N = 1] \leq \frac{1}{2} - \delta$.

The difference comparing to Goldreich-Levin – no control over the R_n 's.