Foundation of Cryptography, Lecture 9 Encryption Schemes

Benny Applebaum & Iftach Haitner, Tel Aviv University

Tel Aviv University.

January 12-19, 2017

Section 1

Definitions

Definition 1 (encryption scheme)

A trippet of PPTM's (G, E, D) such that

- **O** $G(1^n)$ outputs $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② E(*e*, *m*) outputs *c* ∈ {0, 1}*
- **3** D(d, c) outputs $m \in \{0, 1\}^*$

Definition 1 (encryption scheme)

A trippet of PPTM's (G, E, D) such that

- **O** $G(1^n)$ outputs $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② E(*e*, *m*) outputs *c* ∈ {0, 1}*
- **3** D(d, c) outputs $m \in \{0, 1\}^*$

Definition 1 (encryption scheme)

A trippet of PPTM's (G, E, D) such that

- **O** $G(1^n)$ outputs $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② E(*e*, *m*) outputs *c* ∈ {0, 1}*
- **3** D(d, c) outputs $m \in \{0, 1\}^*$

- *e* encryption key, *d* decryption key
- m plaintext, c = E(e, m) ciphertext
- $E_e(m) \equiv E(e, m)$ and $D_d(c) \equiv D(d, c)$,

Definition 1 (encryption scheme)

A trippet of PPTM's (G, E, D) such that

- **O** $G(1^n)$ outputs $(e, d) \in \{0, 1\}^* \times \{0, 1\}^*$
- ② E(*e*, *m*) outputs *c* ∈ {0, 1}*
- **3** D(d, c) outputs $m \in \{0, 1\}^*$

- *e* encryption key, *d* decryption key
- m plaintext, c = E(e, m) ciphertext
- $E_e(m) \equiv E(e, m)$ and $D_d(c) \equiv D(d, c)$,
- public/private key

• What would we like to achieve?

• What would we like to achieve?

- What would we like to achieve?
- Attempt: for any $m \in \{0, 1\}^*$:

 $(m, E_{(G(1^n)_1)}(m)) \equiv (m, U_{\ell(|m|)})$

- What would we like to achieve?
- Attempt: for any $m \in \{0, 1\}^*$:

 $(m, E_{(G(1^n)_1)}(m)) \equiv (m, U_{\ell(|m|)})$

- What would we like to achieve?
- Attempt: for any $m \in \{0, 1\}^*$:

```
(m, E_{(G(1^n)_1)}(m)) \equiv (m, U_{\ell(|m|)})
```

Shannon – only possible in case $|m| \le |G(1^n)_1|$

- What would we like to achieve?
- Attempt: for any $m \in \{0, 1\}^*$:

```
(m, E_{(G(1^n)_1)}(m)) \equiv (m, U_{\ell(|m|)})
```

Shannon – only possible in case $|m| \le |G(1^n)_1|$

- What would we like to achieve?
- Attempt: for any $m \in \{0, 1\}^*$:

```
(m, E_{(G(1^n)_1)}(m)) \equiv (m, U_{\ell(|m|)})
```

- Shannon only possible in case $|m| \le |G(1^n)_1|$
- Other concerns: multiple encryptions, active adversaries, ...

- Ophertext reveals no "computational information" about the plaintext
- 2 Formulate via the *simulation paradigm*

- Ciphertext reveals no "computational information" about the plaintext
- Pormulate via the simulation paradigm
- Ooes not hide the message length

Definition 2 (Semantic Security — private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if \forall PPTM A, \exists PPTM A' s.t. : \forall poly-length dist. ensemble $\mathcal{M} = {\mathcal{M}_n}_{n \in \mathbb{N}}$ and poly-length functions $h, f: {0, 1}^* \mapsto {0, 1}^*$ $| \underset{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1}{\text{Pr}} [A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)]$ $- \underset{m \leftarrow \mathcal{M}_n}{\text{Pr}} [A'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)]| = \text{neg}(n)$

Definition 2 (Semantic Security — private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if \forall PPTM A, \exists PPTM A' s.t. : \forall poly-length dist. ensemble $\mathcal{M} = \{\mathcal{M}_n\}_{n \in \mathbb{N}}$ and poly-length functions $h, f: \{0, 1\}^* \mapsto \{0, 1\}^*$ $\Big| \underset{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1}{\Pr} [A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)]$ $- \underset{m \leftarrow \mathcal{M}_n}{\Pr} [A'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)] \Big| = \operatorname{neg}(n)$

• Non uniformity is inherent.

Definition 2 (Semantic Security — private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if \forall PPTM A, \exists PPTM A' s.t. : \forall poly-length dist. ensemble $\mathcal{M} = {\mathcal{M}_n}_{n \in \mathbb{N}}$ and poly-length functions $h, f: {0, 1}^* \mapsto {0, 1}^*$ $| \underset{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1}{\text{Pr}} [A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)]$ $- \underset{m \leftarrow \mathcal{M}_n}{\text{Pr}} [A'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)]| = \text{neg}(n)$

- Non uniformity is inherent.
- Public-key variant A and A' get e

Definition 2 (Semantic Security — private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if \forall PPTM A, \exists PPTM A' s.t. : \forall poly-length dist. ensemble $\mathcal{M} = {\mathcal{M}_n}_{n \in \mathbb{N}}$ and poly-length functions $h, f: {0, 1}^* \mapsto {0, 1}^*$ $| \underset{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1}{\text{Pr}} [A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)]$ $- \underset{m \leftarrow \mathcal{M}_n}{\text{Pr}} [A'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)]| = \text{neg}(n)$

- Non uniformity is inherent.
- Public-key variant A and A' get e
- Reflection to *ZK*

Definition 2 (Semantic Security — private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key model, if \forall PPTM A, \exists PPTM A' s.t. : \forall poly-length dist. ensemble $\mathcal{M} = {\mathcal{M}_n}_{n \in \mathbb{N}}$ and poly-length functions $h, f: {0, 1}^* \mapsto {0, 1}^*$ $| \underset{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1}{\text{Pr}} [A(1^n, 1^{|m|}, h(1^n, m), E_e(m)) = f(1^n, m)]$ $- \underset{m \leftarrow \mathcal{M}_n}{\text{Pr}} [A'(1^n, 1^{|m|}, h(1^n, m)) = f(1^n, m)]| = \text{neg}(n)$

- Non uniformity is inherent.
- Public-key variant A and A' get e
- Reflection to *ZK*
- We sometimes omit 1ⁿ and 1^{|m|}

• The encryption of two strings is indistinguishable

- The encryption of two strings is indistinguishable
- Less intuitive than semantic security, but easier to work with

- The encryption of two strings is indistinguishable
- Less intuitive than semantic security, but easier to work with

- The encryption of two strings is indistinguishable
- Less intuitive than semantic security, but easier to work with

Definition 3 (Indistinguishablity of encryptions — private-key model) An encryption scheme (G, E, D) has indistinguishable encryptions in the private-key model, if for any $p, \ell \in \text{poly}, \{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$

 $\{(z_n, E_e(x_n))_{e \leftarrow G(1^n)_1}\}_{n \in \mathbb{N}} \approx_c \{(z_n, E_e(y_n))_{e \leftarrow G(1^n)_1}\}_{n \in \mathbb{N}}$

- The encryption of two strings is indistinguishable
- Less intuitive than semantic security, but easier to work with

Definition 3 (Indistinguishablity of encryptions — private-key model) An encryption scheme (G, E, D) has indistinguishable encryptions in the private-key model, if for any $p, \ell \in \text{poly}, \{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$

 $\{(z_n, E_e(x_n))_{e \leftarrow G(1^n)_1}\}_{n \in \mathbb{N}} \approx_c \{(z_n, E_e(y_n))_{e \leftarrow G(1^n)_1}\}_{n \in \mathbb{N}}$

Non uniformity is inherent.

- The encryption of two strings is indistinguishable
- Less intuitive than semantic security, but easier to work with

Definition 3 (Indistinguishablity of encryptions — private-key model) An encryption scheme (G, E, D) has indistinguishable encryptions in the private-key model, if for any $p, \ell \in \text{poly}, \{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$

 $\{(z_n, E_e(x_n))_{e \leftarrow G(1^n)_1}\}_{n \in \mathbb{N}} \approx_c \{(z_n, E_e(y_n))_{e \leftarrow G(1^n)_1}\}_{n \in \mathbb{N}}$

- Non uniformity is inherent.
- Public-key variant the ensemble contains e

Equivalence of definitions

Theorem 4

An encryption scheme (G, E, D) is semantically secure iff is has indistinguishable encryptions.

Equivalence of definitions

Theorem 4

An encryption scheme (G, E, D) is semantically secure iff is has indistinguishable encryptions.

We prove the private key case

Benny Applebaum & Iftach Haitner (TAU)

Foundation of Cryptography

January 12-19, 2017 9 / 32

Fix \mathcal{M} , A, f and h, as in Definition 2.

Fix \mathcal{M} , A, f and h, as in Definition 2.

Algorithm 5 (A')

Input: 1^{*n*}, 1^{|*m*|} and *h*(*m*)

- $\bullet e \leftarrow G(1^n)_1$
- **2** $c = E_e(1^{|m|})$
- **③** Output A(1^{*n*}, 1^{|*m*|}, *h*(*m*), *c*)

Fix \mathcal{M} , A, f and h, as in Definition 2.

Algorithm 5 (A')

Input: 1^n , $1^{|m|}$ and h(m)

- **2** $c = E_e(1^{|m|})$
- **③** Output A(1^{*n*}, 1^{|*m*|}, *h*(*m*), *c*)

Claim 6

A' is a good simulator for A (according to Definition 2)

Fix \mathcal{M} , A, f and h, as in Definition 2.

Algorithm 5 (A')

Input: 1^{*n*}, 1^{|*m*|} and *h*(*m*)

- $\bullet \in G(1^n)_1$
- **2** $c = E_e(1^{|m|})$
- **③** Output A(1^{*n*}, 1^{|*m*|}, *h*(*m*), *c*)

Claim 6

A' is a good simulator for A (according to Definition 2)

Proof:

Fix \mathcal{M} , A, f and h, as in Definition 2.

Algorithm 5 (A')

Input: 1^{*n*}, 1^{|*m*|} and *h*(*m*)

- $\bullet e \leftarrow G(1^n)_1$
- **2** $c = E_e(1^{|m|})$
- **③** Output A(1^{*n*}, 1^{|*m*|}, *h*(*m*), *c*)

Claim 6

A' is a good simulator for A (according to Definition 2)

Proof: Let

$$\delta(n) := \Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} \left[\mathsf{A}(h(m), E_e(m)) = f(m) \right] - \Pr_{m \leftarrow \mathcal{M}_n} \left[\mathsf{A}'(h(m)) = f(m) \right]$$
Indistinguishability \implies Semantic security

Fix \mathcal{M} , A, f and h, as in Definition 2.

Algorithm 5 (A')

Input: 1^n , $1^{|m|}$ and h(m)

- $e \leftarrow G(1^n)_1$
- **2** $c = E_e(1^{|m|})$
- Output A(1ⁿ, 1^{|m|}, h(m), c)

Claim 6

A' is a good simulator for A (according to Definition 2)

Proof: Let

 $\delta(n) := \Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} \left[\mathsf{A}(h(m), \mathcal{E}_e(m)) = f(m) \right] - \Pr_{m \leftarrow \mathcal{M}_n} \left[\mathsf{A}'(h(m)) = f(m) \right]$

We define an algorithm that distinguishes two between two ensembles $\{x_n\}_{n \in \mathbb{N}}$ and $\{y_n\}_{n \in \mathbb{N}}$, with advantage $\delta(n)$.

Indistinguishability \implies Semantic security

Fix \mathcal{M} , A, f and h, as in Definition 2.

Algorithm 5 (A')

Input: 1^n , $1^{|m|}$ and h(m)

 $e \leftarrow G(1^n)_1$

- **2** $c = E_e(1^{|m|})$
- Output A(1ⁿ, 1^{|m|}, h(m), c)

Claim 6

A' is a good simulator for A (according to Definition 2)

Proof: Let

 $\delta(n) := \Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} \left[\mathsf{A}(h(m), E_e(m)) = f(m) \right] - \Pr_{m \leftarrow \mathcal{M}_n} \left[\mathsf{A}'(h(m)) = f(m) \right]$

We define an algorithm that distinguishes two between two ensembles $\{x_n\}_{n\in\mathbb{N}}$ and $\{y_n\}_{n\in\mathbb{N}}$, with advantage $\delta(n)$.

Hence, the indistinguishability of (G, E, D) yields that $\delta(n) \leq neg(n)$.

Claim 7

For every $n \in \mathbb{N}$, exists $x_n \in \text{Supp}(\mathcal{M}_n)$ with $\Pr_{e \leftarrow G(1^n)_1} [A(h(x_n), E_e(x_n)) = f(x_n)] - \Pr[A'(h(x_n)) = f(x_n)] \ge \delta(n).$

Claim 7

For every $n \in \mathbb{N}$, exists $x_n \in \text{Supp}(\mathcal{M}_n)$ with $\Pr_{e \leftarrow G(1^n)_1} [A(h(x_n), E_e(x_n)) = f(x_n)] - \Pr[A'(h(x_n)) = f(x_n)] \ge \delta(n).$

Proof: ?

Claim 7

For every $n \in \mathbb{N}$, exists $x_n \in \text{Supp}(\mathcal{M}_n)$ with $\Pr_{e \leftarrow G(1^n)_1} [A(h(x_n), E_e(x_n)) = f(x_n)] - \Pr[A'(h(x_n)) = f(x_n)] \ge \delta(n).$

Proof: ?

Claim 7

For every $n \in \mathbb{N}$, exists $x_n \in \text{Supp}(\mathcal{M}_n)$ with $\Pr_{e \leftarrow G(1^n)_1} [A(h(x_n), E_e(x_n)) = f(x_n)] - \Pr[A'(h(x_n)) = f(x_n)] \ge \delta(n).$

Proof: ? We consider indistinguishability of $\{x_n\}$ vs. $\{1^{|x_n|}\}$, wrt advice $\{z_n = (1^n, 1^{|x_n|}, h(x_n), f(x_n))\}_{n \in \mathbb{N}}$ and distinguisher

Algorithm 8 (B)

```
Input: z = (1^n, 1^t, h', f'), c
Output 1 iff A(1^n, 1^t, h', c) = f'
```

Claim 7

For every $n \in \mathbb{N}$, exists $x_n \in \text{Supp}(\mathcal{M}_n)$ with $\Pr_{e \leftarrow G(1^n)_1} [A(h(x_n), E_e(x_n)) = f(x_n)] - \Pr[A'(h(x_n)) = f(x_n)] \ge \delta(n).$

Proof: ?

We consider indistinguishability of $\{x_n\}$ vs. $\{1^{|x_n|}\}$, wrt advice $\{z_n = (1^n, 1^{|x_n|}, h(x_n), f(x_n))\}_{n \in \mathbb{N}}$ and distinguisher

Algorithm 8 (B)

Input: $z = (1^n, 1^t, h', f'), c$ Output 1 iff $A(1^n, 1^t, h', c) = f'$

Analysis:

• $\Pr_{e \leftarrow G(1^n)} [B(z_n, E_e(x_n)) = 1] = \Pr_{e \leftarrow G(1^n)_1} [A(1^n, 1^{|x_n|}, h(x_n), E_e(x_n)) = f(x_n)]$

Claim 7

For every $n \in \mathbb{N}$, exists $x_n \in \text{Supp}(\mathcal{M}_n)$ with $\Pr_{e \leftarrow G(1^n)_1} [A(h(x_n), E_e(x_n)) = f(x_n)] - \Pr[A'(h(x_n)) = f(x_n)] \ge \delta(n).$

Proof: ?

We consider indistinguishability of $\{x_n\}$ vs. $\{1^{|x_n|}\}$, wrt advice $\{z_n = (1^n, 1^{|x_n|}, h(x_n), f(x_n))\}_{n \in \mathbb{N}}$ and distinguisher

Algorithm 8 (B)

Input: $z = (1^n, 1^t, h', f'), c$ Output 1 iff $A(1^n, 1^t, h', c) = f'$

Analysis:

•
$$\Pr_{e \leftarrow G(1^n)} [B(z_n, E_e(x_n)) = 1] =$$

 $\Pr_{e \leftarrow G(1^n)_1} [A(1^n, 1^{|x_n|}, h(x_n), E_e(x_n)) = f(x_n)]$

• $\Pr_{e \leftarrow G(1^n)} \left[\mathsf{B}(z_n, E_e(1^{|x_n|})) = 1 \right] = \Pr\left[\mathsf{A}'(1^n, 1^{|x_n|}, h(x_n)) = f(x_n) \right]$

Claim 7

For every $n \in \mathbb{N}$, exists $x_n \in \text{Supp}(\mathcal{M}_n)$ with $\Pr_{e \leftarrow G(1^n)_1} [A(h(x_n), E_e(x_n)) = f(x_n)] - \Pr[A'(h(x_n)) = f(x_n)] \ge \delta(n).$

Proof: ?

We consider indistinguishability of $\{x_n\}$ vs. $\{1^{|x_n|}\}$, wrt advice $\{z_n = (1^n, 1^{|x_n|}, h(x_n), f(x_n))\}_{n \in \mathbb{N}}$ and distinguisher

Algorithm 8 (B)

Input: $z = (1^n, 1^t, h', f'), c$ Output 1 iff $A(1^n, 1^t, h', c) = f'$

Analysis:

•
$$\Pr_{e \leftarrow G(1^n)} [B(z_n, E_e(x_n)) = 1] =$$

 $\Pr_{e \leftarrow G(1^n)_1} [A(1^n, 1^{|x_n|}, h(x_n), E_e(x_n)) = f(x_n)]$

• $\Pr_{e \leftarrow G(1^n)} \left[\mathsf{B}(z_n, E_e(1^{|x_n|})) = 1 \right] = \Pr\left[\mathsf{A}'(1^n, 1^{|x_n|}, h(x_n)) = f(x_n) \right]$

Claim 7

For every $n \in \mathbb{N}$, exists $x_n \in \text{Supp}(\mathcal{M}_n)$ with $\Pr_{e \leftarrow G(1^n)_1} [A(h(x_n), E_e(x_n)) = f(x_n)] - \Pr[A'(h(x_n)) = f(x_n)] \ge \delta(n).$

Proof: ?

We consider indistinguishability of $\{x_n\}$ vs. $\{1^{|x_n|}\}$, wrt advice $\{z_n = (1^n, 1^{|x_n|}, h(x_n), f(x_n))\}_{n \in \mathbb{N}}$ and distinguisher

Algorithm 8 (B)

Input: $z = (1^n, 1^t, h', f'), c$ Output 1 iff $A(1^n, 1^t, h', c) = f'$

Analysis:

• $\Pr_{e \leftarrow G(1^n)} [B(z_n, E_e(x_n)) = 1] = \Pr_{e \leftarrow G(1^n)_1} [A(1^n, 1^{|x_n|}, h(x_n), E_e(x_n)) = f(x_n)]$

• $\Pr_{e \leftarrow G(1^n)} \left[\mathsf{B}(z_n, E_e(1^{|x_n|})) = 1 \right] = \Pr\left[\mathsf{A}'(1^n, 1^{|x_n|}, h(x_n)) = f(x_n) \right]$

Hence, $\Pr_{e \leftarrow G(1^n)} \left[\mathsf{B}(z_n, E_e(x_n)) = 1 \right] - \Pr_{e \leftarrow G(1^n)} \left[\mathsf{B}(z_n, E_e(1^{|x_n|})) = 1 \right] \ge \delta(n).$

For PPT B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$, let

$$\delta(n) = \Pr_{e \leftarrow G(1^n)_1} [B(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1} [B(z_n, E_e(y_n)) = 1]$$

For PPT B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$, let

$$\delta(n) = \Pr_{e \leftarrow G(1^n)_1} [B(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1} [B(z_n, E_e(y_n)) = 1]$$

We define distribution \mathcal{M} , functions f, h and algorithm A that has no $\delta(n)/4$ simulator.

For PPT B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$, let

$$\delta(n) = \Pr_{e \leftarrow G(1^n)_1} [B(z_n, E_e(x_n)) = 1] - \Pr_{e \leftarrow G(1^n)_1} [B(z_n, E_e(y_n)) = 1]$$

We define distribution \mathcal{M} , functions f, h and algorithm A that has no $\delta(n)/4$ simulator. The semantic security of (G, E, D) yields that $\delta(n) \leq \text{neg}(n)$.

For PPT B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$, let

$$\delta(n) = \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, \mathcal{E}_e(x_n)) = 1 \right] - \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, \mathcal{E}_e(y_n)) = 1 \right]$$

We define distribution \mathcal{M} , functions f, h and algorithm A that has no $\delta(n)/4$ simulator. The semantic security of (G, E, D) yields that $\delta(n) \leq \text{neg}(n)$.

Let $f(x_n) = 1$ and $f(y_n) = 0$, and let A(w) output 1 if B(w) = 1, and a uniform bit otherwise.

For PPT B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$, let

$$\delta(n) = \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, \mathcal{E}_e(x_n)) = 1 \right] - \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, \mathcal{E}_e(y_n)) = 1 \right]$$

We define distribution \mathcal{M} , functions f, h and algorithm A that has no $\delta(n)/4$ simulator. The semantic security of (G, E, D) yields that $\delta(n) \leq \text{neg}(n)$.

Let $f(x_n) = 1$ and $f(y_n) = 0$, and let A(w) output 1 if B(w) = 1, and a uniform bit otherwise.

Claim 9

$$\mathsf{Pr}_{e \leftarrow G(1^n)_1, t_n \leftarrow \{x_n, y_n\}} \left[\mathsf{A}(z_n, \mathcal{E}_e(t_n)) = f(t_n) \right] = \frac{1}{2} + \frac{\delta(n)}{4}$$

For PPT B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$, let

$$\delta(n) = \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, \mathcal{E}_e(x_n)) = 1 \right] - \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, \mathcal{E}_e(y_n)) = 1 \right]$$

We define distribution \mathcal{M} , functions f, h and algorithm A that has no $\delta(n)/4$ simulator. The semantic security of (G, E, D) yields that $\delta(n) \leq \text{neg}(n)$.

Let $f(x_n) = 1$ and $f(y_n) = 0$, and let A(w) output 1 if B(w) = 1, and a uniform bit otherwise.

Claim 9

$$\mathsf{Pr}_{e \leftarrow G(1^n)_1, t_n \leftarrow \{x_n, y_n\}} \left[\mathsf{A}(z_n, \mathcal{E}_e(t_n)) = f(t_n) \right] = \frac{1}{2} + \frac{\delta(n)}{4}$$

Proof:

For PPT B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$, let

$$\delta(n) = \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, \mathcal{E}_e(x_n)) = 1 \right] - \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, \mathcal{E}_e(y_n)) = 1 \right]$$

We define distribution \mathcal{M} , functions f, h and algorithm A that has no $\delta(n)/4$ simulator. The semantic security of (G, E, D) yields that $\delta(n) \leq \text{neg}(n)$.

Let $f(x_n) = 1$ and $f(y_n) = 0$, and let A(w) output 1 if B(w) = 1, and a uniform bit otherwise.

Claim 9

$$\mathsf{Pr}_{e \leftarrow G(1^n)_1, t_n \leftarrow \{x_n, y_n\}} \left[\mathsf{A}(z_n, \mathcal{E}_e(t_n)) = f(t_n) \right] = \frac{1}{2} + \frac{\delta(n)}{4}$$

Proof: Let $\alpha(n) = \Pr_{e \leftarrow G(1^n)_1} [B(z_n, E_e(x_n)) = 1].$

For PPT B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$, let

$$\delta(n) = \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, \mathcal{E}_e(x_n)) = 1 \right] - \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, \mathcal{E}_e(y_n)) = 1 \right]$$

We define distribution \mathcal{M} , functions f, h and algorithm A that has no $\delta(n)/4$ simulator. The semantic security of (G, E, D) yields that $\delta(n) \leq \text{neg}(n)$.

Let $f(x_n) = 1$ and $f(y_n) = 0$, and let A(w) output 1 if B(w) = 1, and a uniform bit otherwise.

Claim 9

$$\mathsf{Pr}_{e \leftarrow G(1^n)_1, t_n \leftarrow \{x_n, y_n\}} \left[\mathsf{A}(z_n, \mathcal{E}_e(t_n)) = f(t_n) \right] = \frac{1}{2} + \frac{\delta(n)}{4}$$

Proof: Let $\alpha(n) = \Pr_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(x_n)) = 1].$

$$\Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{A}(z_n, E_e(x_n)) = f(x_n) \right] = \alpha(n) + \frac{1}{2}(1 - \alpha(n)) = \frac{1}{2} + \frac{\alpha(n)}{2}$$

For PPT B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n\}_{n \in \mathbb{N}}$, let

$$\delta(n) = \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, \mathcal{E}_e(x_n)) = 1 \right] - \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, \mathcal{E}_e(y_n)) = 1 \right]$$

We define distribution \mathcal{M} , functions f, h and algorithm A that has no $\delta(n)/4$ simulator. The semantic security of (G, E, D) yields that $\delta(n) \leq \text{neg}(n)$.

Let $f(x_n) = 1$ and $f(y_n) = 0$, and let A(w) output 1 if B(w) = 1, and a uniform bit otherwise.

Claim 9

$$\mathsf{Pr}_{e \leftarrow G(1^n)_1, t_n \leftarrow \{x_n, y_n\}} \left[\mathsf{A}(z_n, \mathcal{E}_e(t_n)) = f(t_n) \right] = \frac{1}{2} + \frac{\delta(n)}{4}$$

Proof: Let $\alpha(n) = \Pr_{e \leftarrow G(1^n)_1} [\mathsf{B}(z_n, E_e(x_n)) = 1].$

$$\Pr_{e \leftarrow G(1^n)_1} [A(z_n, E_e(x_n)) = f(x_n)] = \alpha(n) + \frac{1}{2}(1 - \alpha(n)) = \frac{1}{2} + \frac{\alpha(n)}{2}$$

and

$$\Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{A}(z_n, E_e(y_n)) = f(y_n) \right] = \frac{1}{2} + \frac{\delta(n) - \alpha(n)}{2}$$

- Let \mathcal{M}_n be x_n w.p. $\frac{1}{2}$, and y_n otherwise.
- Let $h(1^n, \cdot) = z_n$, and recall $f(x_n) = 1$ and $f(y_n) = 0$.

• Let \mathcal{M}_n be x_n w.p. $\frac{1}{2}$, and y_n otherwise.

• Let $h(1^n, \cdot) = z_n$, and recall $f(x_n) = 1$ and $f(y_n) = 0$.

By Claim 9:

$$\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} [\mathsf{A}(h(1^n, m), E_e(m)) = f(m)] = \frac{1}{2} + \frac{\delta(n)}{2}$$

• Let \mathcal{M}_n be x_n w.p. $\frac{1}{2}$, and y_n otherwise.

• Let $h(1^n, \cdot) = z_n$, and recall $f(x_n) = 1$ and $f(y_n) = 0$.

By Claim 9:

$$\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} \left[\mathsf{A}(h(1^n, m), E_e(m)) = f(m) \right] = \frac{1}{2} + \frac{\delta(n)}{2}$$

But, for any A':

$$\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} \left[\mathsf{A}'(h(1^n, m)) = f(m) \right] \leq \frac{1}{2}$$

• Let \mathcal{M}_n be x_n w.p. $\frac{1}{2}$, and y_n otherwise.

• Let $h(1^n, \cdot) = z_n$, and recall $f(x_n) = 1$ and $f(y_n) = 0$.

By Claim 9:

$$\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} \left[\mathsf{A}(h(1^n, m), E_e(m)) = f(m) \right] = \frac{1}{2} + \frac{\delta(n)}{2}$$

But, for any A':

$$\Pr_{m \leftarrow \mathcal{M}_n, e \leftarrow G(1^n)_1} \left[\mathsf{A}'(h(1^n, m)) = f(m) \right] \leq \frac{1}{2}$$

Hence, $\delta(n) \leq \operatorname{neg}(n)$.

Definition 10 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in \text{poly}$, $\{x_{n,1}, \ldots, x_{n,t(n)}, y_{n,1}, \ldots, y_{n,t(n)} \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}, \text{PPTM B:}$

$$\begin{vmatrix} \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1 \right] \\ - \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \right] |= \mathsf{neg}(n) \end{vmatrix}$$

Definition 10 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in \text{poly}$, $\{x_{n,1}, \ldots, x_{n,t(n)}, y_{n,1}, \ldots, y_{n,t(n)} \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}, \text{PPTM B:}$

$$|\Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1 \right] - \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \right] |= \mathsf{neg}(n)$$

Extensions:

Definition 10 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in \text{poly}$, $\{x_{n,1}, \ldots, x_{n,t(n)}, y_{n,1}, \ldots, y_{n,t(n)} \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}, \text{ PPTM B:}$

$$\begin{vmatrix} \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1 \right] \\ - \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \right] |= \mathsf{neg}(n) \end{vmatrix}$$

Extensions:

Different length messages

Definition 10 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in \text{poly}$, $\{x_{n,1}, \ldots, x_{n,t(n)}, y_{n,1}, \ldots, y_{n,t(n)} \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}, \text{PPTM B:}$

$$\begin{vmatrix} \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1 \right] \\ - \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \right] \end{vmatrix} = \mathsf{neg}(n)$$

Extensions:

- Different length messages
- Semantic security version

Definition 10 (Indistinguishablity for multiple encryptions – private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple messages in the private-key model, if for any $p, \ell, t \in \text{poly}$, $\{x_{n,1}, \ldots, x_{n,t(n)}, y_{n,1}, \ldots, y_{n,t(n)} \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}, \text{PPTM B:}$

$$\begin{vmatrix} \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, E_e(x_{n,1}), \dots E_e(x_{n,t(n)})) = 1 \right] \\ - \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(z_n, E_e(y_{n,1}), \dots E_e(y_{n,t(n)})) = 1 \right] \end{vmatrix} = \mathsf{neg}(n)$$

Extensions:

- Different length messages
- Semantic security version
- Public-key variant

Theorem 11

A public-key encryption scheme has indistinguishable encryptions for multiple messages, iff it has indistinguishable encryptions for a single message.

Theorem 11

A public-key encryption scheme has indistinguishable encryptions for multiple messages, iff it has indistinguishable encryptions for a single message.

Proof: Let (G, E, D) be a public-key encryption scheme that has no indistinguishable encryptions for multiple messages, with respect to PPT B, $\{x_{n,1}, \ldots, x_{n,t(n)}, y_{n,1}, \ldots, y_{n,t(n)} \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}.$

Theorem 11

A public-key encryption scheme has indistinguishable encryptions for multiple messages, iff it has indistinguishable encryptions for a single message.

Proof: Let (G, E, D) be a public-key encryption scheme that has no indistinguishable encryptions for multiple messages, with respect to PPT B, $\{x_{n,1}, \ldots, x_{n,t(n)}, y_{n,1}, \ldots, y_{n,t(n)} \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}.$ Hence, for some function $i(n) \in [t(n)]$:

$$\begin{aligned} &| \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(1^n, e, E_e(x_{n,1}), \dots, E_e(x_{n,i-1}), E_e(y_{n,i}), \dots, E_e(y_{n,t(n)})) = 1 \right] \\ &- \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(1^n, e, E_e(x_{n,1}), \dots, E_e(x_{n,i}), E_e(y_{n,i+1}), \dots, E_e(y_{n,t(n)})) = 1 \right] | \\ &> \mathsf{neg}(n). \end{aligned}$$

Theorem 11

A public-key encryption scheme has indistinguishable encryptions for multiple messages, iff it has indistinguishable encryptions for a single message.

Proof: Let (G, E, D) be a public-key encryption scheme that has no indistinguishable encryptions for multiple messages, with respect to PPT B, $\{x_{n,1}, \ldots, x_{n,t(n)}, y_{n,1}, \ldots, y_{n,t(n)} \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}.$ Hence, for some function $i(n) \in [t(n)]$:

$$\begin{aligned} &| \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(1^n, e, E_e(x_{n,1}), \dots, E_e(x_{n,i-1}), E_e(y_{n,i}), \dots, E_e(y_{n,t(n)})) = 1 \right] \\ &- \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(1^n, e, E_e(x_{n,1}), \dots, E_e(x_{n,i}), E_e(y_{n,i+1}), \dots, E_e(y_{n,t(n)})) = 1 \right] \\ &> \mathsf{neg}(n). \end{aligned}$$

Thus, (G, E, D) has no indistinguishable encryptions for single message:

Theorem 11

A public-key encryption scheme has indistinguishable encryptions for multiple messages, iff it has indistinguishable encryptions for a single message.

Proof: Let (G, E, D) be a public-key encryption scheme that has no indistinguishable encryptions for multiple messages, with respect to PPT B, $\{x_{n,1}, \ldots, x_{n,t(n)}, y_{n,1}, \ldots, y_{n,t(n)} \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}, \{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}.$ Hence, for some function $i(n) \in [t(n)]$:

$$\begin{aligned} &| \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(1^n, e, E_e(x_{n,1}), \dots, E_e(x_{n,i-1}), E_e(y_{n,i}), \dots, E_e(y_{n,t(n)})) = 1 \right] \\ &- \Pr_{e \leftarrow G(1^n)_1} \left[\mathsf{B}(1^n, e, E_e(x_{n,1}), \dots, E_e(x_{n,i}), E_e(y_{n,i+1}), \dots, E_e(y_{n,t(n)})) = 1 \right] \\ &> \mathsf{neg}(n). \end{aligned}$$

Thus, (G, E, D) has no indistinguishable encryptions for single message: Algorithm 12 (B')

Input: 1^n , $z_n = (i(n), x_{n,1}, \dots, x_{n,t(n)}, y_{n,1}, \dots, y_{n,t(n)})$, *e*, *C* Return B(*c*, $E_e(x_{n,1}), \dots, E_e(x_{n,i-1}), c$, $E_e(y_{n,i+1}), \dots, E_e(y_{n,t(n)})$)

Multiple Encryption in the Private-Key Model

Fact 13

Assuming (non uniform) OWFs exists, then \exists encryption scheme that has private-key indistinguishable encryptions for a single messages, but not for multiple messages.

Multiple Encryption in the Private-Key Model

Fact 13

Assuming (non uniform) OWFs exists, then \exists encryption scheme that has private-key indistinguishable encryptions for a single messages, but not for multiple messages.

Proof: Let $g: \{0,1\}^n \mapsto \{0,1\}^{n+1}$ be a (non-uniform) PRG, and for $i \in \mathbb{N}$ let g^i be its "iterated extension" to output of length n + i (see Lecture 2).
Fact 13

Assuming (non uniform) OWFs exists, then \exists encryption scheme that has private-key indistinguishable encryptions for a single messages, but not for multiple messages.

Proof: Let $g: \{0,1\}^n \mapsto \{0,1\}^{n+1}$ be a (non-uniform) PRG, and for $i \in \mathbb{N}$ let g^i be its "iterated extension" to output of length n + i (see Lecture 2).

Construction 14

- G(1^{*n*}): outputs $e \leftarrow \{0, 1\}^n$
- $E_e(m)$: outputs $g^{|m|}(e) \oplus m$
- $\mathsf{D}_e(c)$: outputs $g^{|c|}(e) \oplus c$

Claim 15

(G, E, D) has private-key indistinguishable encryptions for a single message

Claim 15

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof:

Claim 15

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it:

Claim 15

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it:

 $\left| \Pr[\mathsf{B}(z_n, g^{\ell(n)}(U_n) \oplus x_n) = 1] - \Pr[\mathsf{B}(z_n, g^{\ell(n)}(U_n) \oplus y_n) = 1] \right| > \operatorname{neg}(n) \quad (1)$

Claim 15

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it:

 $\left|\Pr[\mathsf{B}(z_n, g^{\ell(n)}(U_n) \oplus x_n) = 1] - \Pr[\mathsf{B}(z_n, g^{\ell(n)}(U_n) \oplus y_n) = 1]\right| > \mathsf{neg}(n) \quad (1)$

Hence, B yields a (non-uniform) distinguisher for g. (?)

Claim 15

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it:

 $\left|\Pr[\mathsf{B}(z_n, g^{\ell(n)}(U_n) \oplus x_n) = 1] - \Pr[\mathsf{B}(z_n, g^{\ell(n)}(U_n) \oplus y_n) = 1]\right| > \operatorname{neg}(n) \quad (1)$

Hence, B yields a (non-uniform) distinguisher for g. (?)

Claim 16 (G, E, D) does not have a private-key indistinguishable encryptions for multiple messages

Claim 15

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it:

 $\left| \Pr[\mathsf{B}(z_n, g^{\ell(n)}(U_n) \oplus x_n) = 1] - \Pr[\mathsf{B}(z_n, g^{\ell(n)}(U_n) \oplus y_n) = 1] \right| > \operatorname{neg}(n) \quad (1)$

Hence, B yields a (non-uniform) distinguisher for g. (?)

Claim 16 (G, E, D) does not have a private-key indistinguishable encryptions for multiple messages

Proof:

Claim 15

(G, E, D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, $\{x_n, y_n \in \{0, 1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ and $\{z_n \in \{0, 1\}^{p(n)}\}_{n \in \mathbb{N}}$ be the triplet that realizes it:

 $\left|\Pr[\mathsf{B}(z_n, g^{\ell(n)}(U_n) \oplus x_n) = 1] - \Pr[\mathsf{B}(z_n, g^{\ell(n)}(U_n) \oplus y_n) = 1]\right| > \operatorname{neg}(n) \quad (1)$

Hence, B yields a (non-uniform) distinguisher for g. (?)

Claim 16 (G, E, D) does not have a private-key indistinguishable encryptions for multiple messages

Proof: Take $x_{n,1} = x_{n,2}$ and $y_{n,1} \neq y_{n,2}$, and let B be the algorithm that on input (c_1, c_2) , outputs 1 iff $c_1 = c_2$.

Section 2

Constructions

Suffices to encrypt messages of some fixed length (here the length is n).(?)

Suffices to encrypt messages of some fixed length (here the length is n).(?) Let \mathcal{F} be a (non-uniform) length-preserving PRF

Suffices to encrypt messages of some fixed length (here the length is n).(?)

Let \mathcal{F} be a (non-uniform) length-preserving PRF

Construction 17

- $G(1^n)$: output $e \leftarrow \mathcal{F}_n$
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(r, e(r) \oplus m)$
- $D_e(r, c)$: output $e(r) \oplus c$

Suffices to encrypt messages of some fixed length (here the length is n).(?)

Let \mathcal{F} be a (non-uniform) length-preserving PRF

Construction 17

- $G(1^n)$: output $e \leftarrow \mathcal{F}_n$
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(r, e(r) \oplus m)$
- D_e(*r*, *c*): output e(*r*) ⊕ *c*

Claim 18

(G, E, D) has private-key indistinguishable encryptions for a multiple messages

Suffices to encrypt messages of some fixed length (here the length is n).(?)

Let \mathcal{F} be a (non-uniform) length-preserving PRF

Construction 17

- $G(1^n)$: output $e \leftarrow \mathcal{F}_n$
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(r, e(r) \oplus m)$
- D_e(*r*, *c*): output e(*r*) ⊕ *c*

Claim 18

(G, E, D) has private-key indistinguishable encryptions for a multiple messages

Proof: ?

Let (G_T, f, Inv) be a (non-uniform) TDP, and let b be hardcore predicate for it.

Let (G_T, f, Inv) be a (non-uniform) TDP, and let b be hardcore predicate for it.

Construction 19 (bit encryption)

- $G(1^n)$: output $(e, d) \leftarrow G_T(1^n)$
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(y = f_e(r), c = b(r) \oplus m)$
- $D_d(y, c)$: output $b(Inv_d(y)) \oplus c$

Let (G_T, f, Inv) be a (non-uniform) TDP, and let b be hardcore predicate for it.

Construction 19 (bit encryption)

- $G(1^n)$: output $(e, d) \leftarrow G_T(1^n)$
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(y = f_e(r), c = b(r) \oplus m)$
- $D_d(y, c)$: output $b(Inv_d(y)) \oplus c$

Claim 20

(G, E, D) has public-key indistinguishable encryptions for a multiple messages

Let (G_T, f, Inv) be a (non-uniform) TDP, and let b be hardcore predicate for it.

Construction 19 (bit encryption)

- $G(1^n)$: output $(e, d) \leftarrow G_T(1^n)$
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(y = f_e(r), c = b(r) \oplus m)$
- $D_d(y, c)$: output $b(Inv_d(y)) \oplus c$

Claim 20

(G, E, D) has public-key indistinguishable encryptions for a multiple messages

Proof:

Let (G_T, f, Inv) be a (non-uniform) TDP, and let b be hardcore predicate for it.

Construction 19 (bit encryption)

- $G(1^n)$: output $(e, d) \leftarrow G_T(1^n)$
- $E_e(m)$: choose $r \leftarrow \{0,1\}^n$ and output $(y = f_e(r), c = b(r) \oplus m)$
- $D_d(y, c)$: output $b(Inv_d(y)) \oplus c$

Claim 20

(G, E, D) has public-key indistinguishable encryptions for a multiple messages

Proof:

We believe that public-key encryptions schemes are "more complex" than private-key ones

Section 3

Active adversaries

• Chosen plaintext attack (CPA):

The adversary can ask for encryption and choose the messages to distinguish accordingly

• Chosen plaintext attack (CPA):

The adversary can ask for encryption and choose the messages to distinguish accordingly

• Chosen ciphertext attack (CCA):

The adversary can also ask for decryptions of certain messages

• Chosen plaintext attack (CPA):

The adversary can ask for encryption and choose the messages to distinguish accordingly

• Chosen ciphertext attack (CCA):

The adversary can also ask for decryptions of certain messages

• Chosen plaintext attack (CPA):

The adversary can ask for encryption and choose the messages to distinguish accordingly

• Chosen ciphertext attack (CCA):

The adversary can also ask for decryptions of certain messages

• In the public-key settings, the adversary is also given the public key

• Chosen plaintext attack (CPA):

The adversary can ask for encryption and choose the messages to distinguish accordingly

• Chosen ciphertext attack (CCA):

The adversary can also ask for decryptions of certain messages

• In the public-key settings, the adversary is also given the public key

• Chosen plaintext attack (CPA):

The adversary can ask for encryption and choose the messages to distinguish accordingly

Chosen ciphertext attack (CCA):

The adversary can also ask for decryptions of certain messages

- In the public-key settings, the adversary is also given the public key
- We focus on indistinguishability, but each of the above definitions has an equivalent semantic security variant.

CPA security

Let (G, E, D) be an encryption scheme. For a pair of algorithms $A = (A_1, A_2)$, $n \in \mathbb{N}, z \in \{0, 1\}^*$ and $b \in \{0, 1\}$, let:

Experiment 21 (Exp $_{A,n,z}^{CPA}(b)$)

- $(e,d) \leftarrow G(1^n)$
- ② $(m_0, m_1, s) \leftarrow A_1^{E_e(\cdot)}(1^n, z)$, where $|m_0| = |m_1|$.
- 3 $c \leftarrow \mathsf{E}_e(m_b)$
- Output $A_2^{E_e(\cdot)}(1^n, s, c)$

CPA security

Let (G, E, D) be an encryption scheme. For a pair of algorithms $A = (A_1, A_2)$, $n \in \mathbb{N}, z \in \{0, 1\}^*$ and $b \in \{0, 1\}$, let:

Experiment 21 (Exp $_{A,n,z}^{CPA}(b)$)

- $(e,d) \leftarrow G(1^n)$
- ② $(m_0, m_1, s) \leftarrow A_1^{E_e(\cdot)}(1^n, z)$, where $|m_0| = |m_1|$.
- 3 $c \leftarrow \mathsf{E}_e(m_b)$
- Output $A_2^{E_e(\cdot)}(1^n, s, c)$

Definition 22 (private key CPA)

(G, E, D) has indistinguishable encryptions in the private-key model under CPA attack, if \forall PPT A₁, A₂, and poly-bounded $\{z_n\}_{n \in \mathbb{N}}$:

$$|\Pr[\mathsf{Exp}_{\mathsf{A},n,z_n}^{\mathsf{CPA}}(0)=1]-\Pr[\mathsf{Exp}_{\mathsf{A},n,z_n}^{\mathsf{CPA}}(1)=1]|=\mathsf{neg}(n)$$

• public-key variant.

- public-key variant.
- The scheme from Construction 17 has indistinguishable encryptions in the private-key model under CPA attack (for short, private-key CPA secure)

- public-key variant.
- The scheme from Construction 17 has indistinguishable encryptions in the private-key model under CPA attack (for short, private-key CPA secure)
- The scheme from Construction 19 has indistinguishable encryptions in the public-key model under CPA attack (for short, public-key CPA secure)

- public-key variant.
- The scheme from Construction 17 has indistinguishable encryptions in the private-key model under CPA attack (for short, private-key CPA secure)
- The scheme from Construction 19 has indistinguishable encryptions in the public-key model under CPA attack (for short, public-key CPA secure)
- In both cases, definitions are not equivalent (?)

CCA Security

Experiment 23 (Exp^{CCA1}_{A,n,z}(b))

- $(e, d) \leftarrow G(1^n)$
- ② $(m_0, m_1, s) \leftarrow A_1^{E_e(\cdot), D_d(\cdot)}(1^n, z)$, where $|m_0| = |m_1|$.
- 3 $c \leftarrow \mathsf{E}_e(m_b)$
- Output $A_2^{E_e(\cdot)}(1^n, s, c)$

CCA Security

Experiment 23 (Exp^{CCA1}_{A,n,z}(b))

- $\textcircled{0} (e,d) \leftarrow G(1^n)$
- ② $(m_0, m_1, s) \leftarrow A_1^{E_e(\cdot), D_d(\cdot)}(1^n, z)$, where $|m_0| = |m_1|$.
- 3 $c \leftarrow \mathsf{E}_e(m_b)$
- Output $A_2^{E_e(\cdot)}(1^n, s, c)$

Experiment 24 (Exp^{CCA2}_{A,n,zn}(b))

$$(e,d) \leftarrow G(1^n)$$

2
$$(m_0, m_1, s) \leftarrow \mathsf{A}_1^{\mathsf{E}_e(\cdot), \mathcal{D}_d(\cdot)}(1^n, z)$$
, where $|m_0| = |m_1|$.

$$c \leftarrow \mathsf{E}_e(m_b)$$

Output $A_2^{E_e(\cdot),D_d^{-c}(\cdot)}(1^n, s, c)$

CCA Security, cont.

Definition 25 (private key CCA1/CCA2)

(G, E, D) has indistinguishable encryptions in the private-key model under $x \in \{CCA1, CCA2\}$ attack, if $\forall PPT A_1, A_2$, and poly-bounded $\{z_n\}_{n \in \mathbb{N}}$:

 $|\Pr[Exp_{A,n,z_n}^{X}(0) = 1] - \Pr[Exp_{A,n,z_n}^{X}(1) = 1]| = neg(n)$
CCA Security, cont.

Definition 25 (private key CCA1/CCA2)

(G, E, D) has indistinguishable encryptions in the private-key model under $x \in \{CCA1, CCA2\}$ attack, if $\forall PPT A_1, A_2$, and poly-bounded $\{z_n\}_{n \in \mathbb{N}}$:

 $|\Pr[Exp_{A,n,z_n}^{\chi}(0) = 1] - \Pr[Exp_{A,n,z_n}^{\chi}(1) = 1]| = neg(n)$

The public key definition is analogous

• Is the scheme from Construction 17 private-key CCA1 secure?

- Is the scheme from Construction 17 private-key CCA1 secure?
- CCA2 secure?

- Is the scheme from Construction 17 private-key CCA1 secure?
- CCA2 secure?

• Is the scheme from Construction 17 private-key CCA1 secure?

• CCA2 secure?

Let (G, E, D) be a private-key CPA scheme, and let $(Gen_M, Mac, Vrfy)$ be an existential unforgeable strong MAC.

- Is the scheme from Construction 17 private-key CCA1 secure?
- CCA2 secure?

Let (G, E, D) be a private-key CPA scheme, and let $(Gen_M, Mac, Vrfy)$ be an existential unforgeable strong MAC.

Construction 26

- $G'(1^n)$: Output $(e \leftarrow G_E(1^n), k \leftarrow Gen_M(1^n))$.^{*a*}
- $\mathsf{E}'_{e,k}(m)$: let $c = \mathsf{E}_e(m)$ and output $(c, t = \mathsf{Mac}_k(c))$
- $D_{e,k}(c, t)$: if $Vrfy_k(c, t) = 1$, output $D_e(c)$. Otherwise, output \bot

^aWe assume wlg. that the encryption and decryption keys are the same.

- Is the scheme from Construction 17 private-key CCA1 secure?
- CCA2 secure?

Let (G, E, D) be a private-key CPA scheme, and let $(Gen_M, Mac, Vrfy)$ be an existential unforgeable strong MAC.

Construction 26

- $G'(1^n)$: Output $(e \leftarrow G_E(1^n), k \leftarrow Gen_M(1^n)).^a$
- $\mathsf{E}'_{e,k}(m)$: let $c = \mathsf{E}_e(m)$ and output $(c, t = \mathsf{Mac}_k(c))$
- $D_{e,k}(c, t)$: if $Vrfy_k(c, t) = 1$, output $D_e(c)$. Otherwise, output \bot

^aWe assume wlg. that the encryption and decryption keys are the same.

Theorem 27

Construction 26 is a private-key CCA2-secure encryption scheme.

- Is the scheme from Construction 17 private-key CCA1 secure?
- CCA2 secure?

Let (G, E, D) be a private-key CPA scheme, and let $(Gen_M, Mac, Vrfy)$ be an existential unforgeable strong MAC.

Construction 26

- $G'(1^n)$: Output $(e \leftarrow G_E(1^n), k \leftarrow Gen_M(1^n))$.^{*a*}
- $\mathsf{E}'_{e,k}(m)$: let $c = \mathsf{E}_e(m)$ and output $(c, t = \mathsf{Mac}_k(c))$
- $D_{e,k}(c, t)$: if $Vrfy_k(c, t) = 1$, output $D_e(c)$. Otherwise, output \bot

^aWe assume wlg. that the encryption and decryption keys are the same.

Theorem 27

Construction 26 is a private-key CCA2-secure encryption scheme.

Proof:

- Is the scheme from Construction 17 private-key CCA1 secure?
- CCA2 secure?

Let (G, E, D) be a private-key CPA scheme, and let $(Gen_M, Mac, Vrfy)$ be an existential unforgeable strong MAC.

Construction 26

- $G'(1^n)$: Output $(e \leftarrow G_E(1^n), k \leftarrow Gen_M(1^n))$.^{*a*}
- $\mathsf{E}'_{e,k}(m)$: let $c = \mathsf{E}_e(m)$ and output $(c, t = \mathsf{Mac}_k(c))$
- $D_{e,k}(c, t)$: if $Vrfy_k(c, t) = 1$, output $D_e(c)$. Otherwise, output \bot

^aWe assume wlg. that the encryption and decryption keys are the same.

Theorem 27

Construction 26 is a private-key CCA2-secure encryption scheme.

Proof: An attacker on the CCA2-security of (G', E', D') yields an attacker on the CPA security of (G, E, D), or the existential unforgettably of $(Gen_M, Mac, Vrfy)$.

Benny Applebaum & Iftach Haitner (TAU)

Let (G, E, D) be a public-key CPA scheme and let (P, V) be a \mathcal{NIZK} for $\mathcal{L} = \{(c_0, c_1, pk_0, pk_1) : \exists (m, z_0, z_1) \text{ s.t. } c_0 = \mathsf{E}_{pk_0}(m, z_0) \land c_1 = \mathsf{E}_{pk_1}(m, z_1)\}$

Let (G, E, D) be a public-key CPA scheme and let (P, V) be a \mathcal{NIZK} for $\mathcal{L} = \{(c_0, c_1, pk_0, pk_1) : \exists (m, z_0, z_1) \text{ s.t. } c_0 = \mathsf{E}_{pk_0}(m, z_0) \land c_1 = \mathsf{E}_{pk_1}(m, z_1)\}$

Construction 28 (Naor-Yung)

• G'(1ⁿ): **●** For $i \in \{0, 1\}$: set $(sk_i, pk_i) \leftarrow G(1^n)$. 2 Let $r \leftarrow \{0, 1\}^{\ell(n)}$, and output $pk' = (pk_0, pk_1, r)$ and $sk' = (pk', sk_0, sk_1)$ • $\mathsf{E}'_{nk'}(m)$: • For $i \in \{0, 1\}$: set $c_i = E_{pk_i}(m, z_i)$, where z_i is a uniformly chosen string of the right length **2** $\pi \leftarrow \mathsf{P}((c_0, c_1, pk_0, pk_1), (m, z_0, z_1), r)$ Output (c_0, c_1, π) . • $D'_{sk'}(c_0, c_1, \pi)$: If $V((c_0, c_1, pk_0, pk_1), \pi, r) = 1$, return $D_{sk_0}(c_0)$. Otherwise, return \perp .

- We assume for simplicity that the encryption key output by G(1ⁿ) is of length at least n. (?)
- ℓ is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" n.

- We assume for simplicity that the encryption key output by G(1ⁿ) is of length at least n. (?)
- ℓ is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" n.

Is the scheme CCA1 secure?

- We assume for simplicity that the encryption key output by G(1ⁿ) is of length at least n. (?)
- ℓ is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" n.

Is the scheme CCA1 secure?

Theorem 29

Assuming (P, V) is adaptive secure, then Construction 28 is a public-key CCA1 secure encryption scheme.

- We assume for simplicity that the encryption key output by G(1ⁿ) is of length at least n. (?)
- ℓ is an arbitrary polynomial, and determines the maximum message length to encrypt using "security parameter" n.

Is the scheme CCA1 secure?

Theorem 29

Assuming (P, V) is adaptive secure, then Construction 28 is a public-key CCA1 secure encryption scheme.

Proof: Given an attacker A' for the CCA1 security of (G', E', D'), we use it to construct an attacker A on the CPA security of (G, E, D) or the adaptive security of (P, V).

Proving Thm 29

Let $S = (S_1, S_2)$ be the (adaptive) simulator for (P, V, L)

Proving Thm 29

Let $S = (S_1, S_2)$ be the (adaptive) simulator for (P, V, \mathcal{L})

Algorithm 30 (A)

Input: (1^{*n*}, *pk*)

- Let $j \leftarrow \{0,1\}$, $pk_{1-j} = pk$, $(pk_j, sk_j) \leftarrow G(1^n)$ and $(r, s) \leftarrow S_1(1^n)$
- 2 Emulate $A'(1^n, pk' = (pk_0, pk_1, r))$:

On query (c_0, c_1, π) of A' to D': If $V((c_0, c_1, pk_0, pk_1), \pi, r) = 1$, answer $D_{sk_j}(c_j)$. Otherwise, answer \bot .

Output the pair (m_0, m_1) that A' outputs

• On challenge $c (= E_{pk}(m_b))$:

- Set $c_{1-j} = c$, $c_j = \mathsf{E}_{pk_j}(m_a)$ for $a \leftarrow \{0, 1\}$, and $\pi \leftarrow \mathsf{S}_2((c_0, c_1, pk_0, pk_1), r, s)$
- Send c' = (c₀, c₁, π) to A'

Output the value that A' does

Claim 31

Assume A' breaks the CCA1 security of (G', E', D') w.p. $\delta(n)$, then A breaks the CPA security of (G, E, D) w.p. $(\delta(n) - \text{neg}(n))/2$.

Claim 31

Assume A' breaks the CCA1 security of (G', E', D') w.p. $\delta(n)$, then A breaks the CPA security of (G, E, D) w.p. $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P, V), yields that $Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$ (2)

Claim 31

Assume A' breaks the CCA1 security of (G', E', D') w.p. $\delta(n)$, then A breaks the CPA security of (G, E, D) w.p. $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P, V), yields that $Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$ (2)

Assume for simplicity that the above prob is 0.

Claim 31

Assume A' breaks the CCA1 security of (G', E', D') w.p. $\delta(n)$, then A breaks the CPA security of (G, E, D) w.p. $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P, V), yields that $Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$ (2)

Assume for simplicity that the above prob is 0. Hence, in the first the emulation of A' is perfect and leaks no information about *j*.

Claim 31

Assume A' breaks the CCA1 security of (G', E', D') w.p. $\delta(n)$, then A breaks the CPA security of (G, E, D) w.p. $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P, V), yields that $Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$ (2)

Assume for simplicity that the above prob is 0. Hence, in the first the emulation of A' is perfect and leaks no information about *j*.

Let $A'(1^n, x, y)$ be A''s output in the emulation induced by $A(1^n)$, conditioned on a = x and b = y.

Claim 31

Assume A' breaks the CCA1 security of (G', E', D') w.p. $\delta(n)$, then A breaks the CPA security of (G, E, D) w.p. $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P, V), yields that $Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$ (2)

Assume for simplicity that the above prob is 0. Hence, in the first the emulation of A' is perfect and leaks no information about *j*.

Let $A'(1^n, x, y)$ be A''s output in the emulation induced by $A(1^n)$, conditioned on a = x and b = y.

Claim 31

Assume A' breaks the CCA1 security of (G', E', D') w.p. $\delta(n)$, then A breaks the CPA security of (G, E, D) w.p. $(\delta(n) - \text{neg}(n))/2$.

The adaptive soundness and adaptive zero-knowledge of (P, V), yields that $Pr[A' \text{ "makes" } A(1^n) \text{ decrypt an invalid cipher}] = neg(n)$ (2)

Assume for simplicity that the above prob is 0. Hence, in the first the emulation of A' is perfect and leaks no information about *j*.

Let $A'(1^n, x, y)$ be A''s output in the emulation induced by $A(1^n)$, conditioned on a = x and b = y.

- Since no information about *j* has leaked, $A'(1^n, 0, 1) \equiv A'(1^n, 1, 0)$
- The adaptive zero-knowledge of (P, V) yields that $|\Pr[A'(1^n, 1, 1) = 1] \Pr[A'(1^n, 0, 0) = 1]| \ge \delta(n) \operatorname{neg}(n)$

Let A(x) be A's output on challenge $E_{pk}(m_x)$ (and security parameter 1^{*n*}).

Let A(x) be A's output on challenge $E_{pk}(m_x)$ (and security parameter 1ⁿ).

 $\begin{aligned} |\Pr[A(1) = 1] - \Pr[A(0) = 1]| \\ = \left| \frac{1}{2} (\Pr[A'(0, 1) = 1] + \Pr[A'(1, 1) = 1]) - \frac{1}{2} (\Pr[A'(0, 0) = 1] + \Pr[A'(1, 0) = 1]) \right| \end{aligned}$

Let A(x) be A's output on challenge $E_{pk}(m_x)$ (and security parameter 1^{*n*}).

$$\begin{aligned} |\Pr[A(1) = 1] - \Pr[A(0) = 1]| \\ &= \left| \frac{1}{2} (\Pr[A'(0, 1) = 1] + \Pr[A'(1, 1) = 1]) - \frac{1}{2} (\Pr[A'(0, 0) = 1] + \Pr[A'(1, 0) = 1]) \right| \\ &\geq \frac{1}{2} \left| \Pr[A'(1, 1) = 1] - \Pr[A'(0, 0) = 1] \right| - \frac{1}{2} \left| \Pr[A'(1, 0) = 1] - \Pr[A'(0, 1) = 1] \right| \end{aligned}$$

Let A(x) be A's output on challenge $E_{pk}(m_x)$ (and security parameter 1^{*n*}).

$$\begin{aligned} |\Pr[A(1) = 1] - \Pr[A(0) = 1]| \\ &= \left| \frac{1}{2} (\Pr[A'(0, 1) = 1] + \Pr[A'(1, 1) = 1]) - \frac{1}{2} (\Pr[A'(0, 0) = 1] + \Pr[A'(1, 0) = 1]) \right| \\ &\geq \frac{1}{2} |\Pr[A'(1, 1) = 1] - \Pr[A'(0, 0) = 1]| - \frac{1}{2} |\Pr[A'(1, 0) = 1] - \Pr[A'(0, 1) = 1]| \\ &\geq (\delta(n) - \operatorname{neg}(n))/2 - 0 \end{aligned}$$

• Is Construction 28 CCA2 secure?

- Is Construction 28 CCA2 secure?
- **Problem:** Soundness might not hold with respect to the simulated CRS, after seeing a proof for an invalid statement

- Is Construction 28 CCA2 secure?
- **Problem:** Soundness might not hold with respect to the simulated CRS, after seeing a proof for an invalid statement
- Solution: use simulation sound \mathcal{NIZK}