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Section 1

Definitions
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Correctness

Definition 1 (encryption scheme)

A trippet of PPTM’s (G, E, D) such that
@ G(1") outputs (e, d) € {0,1}* x {0,1}*
©Q E(e, m) outputs ¢ € {0,1}*
© D(d, c) outputs m € {0,1}*

Correctness: D(d,E(e, m)) = m, for any (e, d) € Supp(G(1")) and
m e {0,1}*
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A trippet of PPTM’s (G, E, D) such that
@ G(1") outputs (e, d) € {0,1}* x {0,1}*
©Q E(e, m) outputs ¢ € {0,1}*
© D(d, c) outputs m € {0,1}*

Correctness: D(d,E(e, m)) = m, for any (e, d) € Supp(G(1")) and
me {0,1}*

@ e — encryption key, d — decryption key
@ m-plaintext, ¢ = E(e, m) — ciphertext

@ E.(m) = E(e,m)and Dy(c) = D(d, c),

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography January 12-19, 2017

3/32




Correctness

Definition 1 (encryption scheme)

A trippet of PPTM’s (G, E, D) such that
@ G(1") outputs (e, d) € {0,1}* x {0,1}*
©Q E(e, m) outputs ¢ € {0,1}*
© D(d, c) outputs m € {0,1}*

Correctness: D(d,E(e, m)) = m, for any (e, d) € Supp(G(1")) and
m e {0,1}*

@ e — encryption key, d — decryption key
@ m-plaintext, ¢ = E(e, m) — ciphertext
@ E.(m) = E(e,m)and Dy(c) = D(d, c),

@ public/private key
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Security

@ What would we like to achieve?
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@ Attempt: forany m e {0,1}*:

(m, E(g(iny,y(m)) = (M, Ug(m)))
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Security

@ What would we like to achieve?

@ Attempt: forany m € {0,1}*:

(m, Ea(iny,y(m)) = (M, U(my))

» Shannon — only possible in case |m| < |G(17)4|
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Security

@ What would we like to achieve?

@ Attempt: forany m € {0,1}*:

(m, Ea(iny,y(m)) = (M, U(my))

» Shannon — only possible in case |m| < |G(17)4|
» Other concerns: multiple encryptions, active adversaries, ...
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Semantic security

@ Ciphertext reveals no "computational information" about the plaintext
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©@ Formulate via the simulation paradigm
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Semantic security

@ Ciphertext reveals no "computational information" about the plaintext
©@ Formulate via the simulation paradigm

© Does not hide the message length
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Semantic security

Definition 2 (Semantic Security — private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key
model, if V PPTM A, 3 PPTM A’ s.t. :

V poly-length dist. ensemble M = {M,},en and poly-length functions
h,f: {0,1}* — {0,1}*

|m<—M |:;<r—c7‘(1n)1[A(1n’1|m|’ h(1n’ m), Ee(m)) = f(1", m)]

— Pr [A(A" 1M h(1", m)) = f(1", m)]|= neg(n)

m«—Mj
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Semantic security

Definition 2 (Semantic Security — private-key model)

An encryption scheme (G, E, D) is semantically secure in the private-key
model, if V PPTM A, 3 PPTM A’ s.t. :

V poly-length dist. ensemble M = {M,},en and poly-length functions
h,f: {0,1}* — {0,1}*

n 4|m| n _ i
e i 2T o [ A1, m), Ex(m) = £(17, m)]
- /(4N qIm| n _ n _
mfﬁAn[AU A A(17, m)) = £(17, m)]|= neg(n)

@ Non uniformity is inherent.
@ Public-key variant — A and A’ get e
@ Reflection to ZK

@ We sometimes omit 17 and 1!

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography January 12-19, 2017 6/32



Indistinguishablity of encryptions
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Indistinguishablity of encryptions

@ The encryption of two strings is indistinguishable

@ Less intuitive than semantic security, but easier to work with

Definition 3 (Indistinguishablity of encryptions — private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions in the
private-key model, if for any p, ¢ € poly, {xn, y» € {0,1}4M} -y and
{zn € {0,1}PN} pen

{(Zm Ee(Xn))e<—G(1")1 }neN ~c {(va Ee(yn))e<—G(1”)1 }HGN
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Indistinguishablity of encryptions

@ The encryption of two strings is indistinguishable

@ Less intuitive than semantic security, but easier to work with

Definition 3 (Indistinguishablity of encryptions — private-key model)

An encryption scheme (G, E, D) has indistinguishable encryptions in the
private-key model, if for any p, ¢ € poly, {xn, y» € {0,1}4M} -y and
{zn € {0,1}PN} pen

{(2n, Ee(Xn))ecaG(17); tnen ~c {(Zn, Ee(Vn))eca(1n), tnen

@ Non uniformity is inherent.

@ Public-key variant — the ensemble contains e
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Equivalence of definitions
Theorem 4

An encryption scheme (G, E, D) is semantically secure iff is has
indistinguishable encryptions.
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Equivalence of definitions

Theorem 4

An encryption scheme (G, E, D) is semantically secure iff is has
indistinguishable encryptions.

We prove the private key case
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Indistinguishability — Semantic security
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Indistinguishability — Semantic security
Fix M, A, fand h, as in Definition 2.
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Indistinguishability — Semantic security
Fix M, A, fand h, as in Definition 2.
Algorithm 5 (A’)
Input: 17, 1! and h(m)
Q e+ G(1"),
Q c=E(1 lml)
© Output A(17, 1™ h(m), c)
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Indistinguishability — Semantic security
Fix M, A, f and h, as in Definition 2.
Algorithm 5 (A’)
Input: 17, 1! and h(m)
Q e« G(1")4
Q c=E(1 lml)
© Output A(17, 1™ h(m), c)

Claim 6
A’ is a good simulator for A (according to Definition 2)

Proof: Let
o(n) = Pr [A(h(m), Ee(m)) = f(m)] - Pr [A'(h(m)) = f(m)]

m<«—Mp,e«G(1")
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Indistinguishability — Semantic security
Fix M, A, f and h, as in Definition 2.
Algorithm 5 (A’)
Input: 17, 1! and h(m)
Q e« G(1")4
Q c=E(1 lml)
© Output A(17, 1™ h(m), c)

Claim 6
A’ is a good simulator for A (according to Definition 2)

Proof: Let

sn)i= | Pr L (AG(m). Eo(m) = f(m)] ~ Pr[A(h(m)) = f(m)

We define an algorithm that distinguishes two between two ensembles
{Xn}new and {yn}nen, with advantage 6(n).
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Indistinguishability — Semantic security
Fix M, A, f and h, as in Definition 2.
Algorithm 5 (A’)
Input: 17, 1! and h(m)
Q e« G(1")4
Q c=E(1 lml)
© Output A(17, 1™ h(m), c)

Claim 6
A’ is a good simulator for A (according to Definition 2)

Proof: Let
o(n) = Pr [A(h(m), Ee(m)) = f(m)] - Pr [A'(h(m)) = f(m)]

m<«—Mp,e«G(1")

We define an algorithm that distinguishes two between two ensembles
{Xn}new and {yn}nen, with advantage 6(n).

Hence, the indistinguishability of (G, E, D) yields that 5(n) < neg(n).
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The distinguisher

Claim 7

For every n € N, exists x, € Supp(M,) with
Precg(n), [A(h(Xn), Ee(Xn)) = f(xn)] — Pr[A’(h(xn)) = f(xn)] > d(n).
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The distinguisher

Claim 7
For every n € N, exists x, € Supp(M,) with
Precc(in), [A(A(Xn), Ee(Xn)) = f(Xn)] — Pr[A'(h(xn)) = f(Xn)] = 6(n).

Proof: ?

We consider indistinguishability of {x,} vs. {1/}, wrt advice
{zn = (17,191 h(x,), f(Xn)) } nen and distinguisher
Algorithm 8 (B)

Input: z= (1" 11, 0, '), c
Output 1 iff A(1", 11, ', c) = f'
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Algorithm 8 (B)

Input: z= (1" 11, 0, '), c
Output 1 iff A(1", 11, ', c) = f'

Analysis:
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For every n € N, exists x, € Supp(M,) with
Precc(in), [A(A(Xn), Ee(Xn)) = f(Xn)] — Pr[A'(h(xn)) = f(Xn)] = 6(n).

Proof: ?

We consider indistinguishability of {x,} vs. {1/}, wrt advice
{zn = (17,191 h(x,), f(Xn)) } nen and distinguisher
Algorithm 8 (B)

Input: z= (1" 11, 0, '), c
Output 1 iff A(1", 11, ', c) = f'

Analysis:
° Pre<—G [B(Zn, Ee(Xn)) - 1] -
Procg(iny, [A(17, 171, h(Xy), Ee(xn)) = f(xn)]

® Preca(in) [B(2n, Es(171)) = 1] = Pr [A(17, 1], h(xy)) = f(x,)]
Hence, Pre._ (1) [B(zn: Eo(Xn)) = 11— Prec_(1n) [B(2n, Eo(11)) = 1] > 8(n).
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Semantic security —> Indistinguishability
For PPT B, {Xp, ¥n € {0,1}*W}ery and {2y} nen, let
o(n) = B [B(zn, Ee(xn)) = 1] = Pr [B(zn, Ee(yn)) = 1]

e e«—G(1")4
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Semantic security —> Indistinguishability
For PPT B, {Xp, ¥n € {0,1 }e(n)}neN and {Z,}nen, let
o(n) = 2{1”) [B(zn, Ee(xn)) = 1] = Pr [B(zn, Ee(yn)) = 1]

e e—G(1")
We define distribution M, functions f, h and algorithm A that has no d(n)/4
simulator.
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Semantic security —> Indistinguishability
For PPT B, {Xp, ¥ € {0,114}y and {z,} nen, let
o(n) = 2{1”) [B(zn, Ee(xn)) = 1] = Pr [B(zn, Ee(yn)) = 1]

e+ e+—G(1M)4
We define distribution M, functions f, h and algorithm A that has no d(n)/4
simulator. The semantic security of (G, E, D) yields that 6(n) < neg(n).
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Semantic security —> Indistinguishability
For PPT B, {Xp, ¥n € {0,1 }e(n)}neN and {Z,}nen, let

é(n) = eeFG)(r1")1 [B(zn, Ee(Xn)) = 1] - egg&n% [B(zn, Ee(yn)) = 1]
We define distribution M, functions f, h and algorithm A that has no d(n)/4
simulator. The semantic security of (G, E, D) yields that 6(n) < neg(n).

Let f(x,) = 1 and f(y,) = 0, and let A(w) output 1 if B(w) = 1, and a uniform
bit otherwise.
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Semantic security —> Indistinguishability
For PPT B, {Xp, ¥n € {0,1 }e(n)}neN and {Z,}nen, let
on)=_ Pr [B(zn Eoba) = 11— Pr_ [B(zn Eolyn) = 1]

e e—G(17)

We define distribution M, functions f, h and algorithm A that has no d(n)/4
simulator. The semantic security of (G, E, D) yields that 6(n) < neg(n).

Let f(x,) = 1 and f(y,) = 0, and let A(w) output 1 if B(w) = 1, and a uniform

bit otherwise.
Claim 9
+ ) J

Pre<—G(1")1,t,,<—{xmy,,} [A(zn, Ee(tn)) = f(tn)] =

=
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Semantic security —> Indistinguishability
For PPT B, {Xp, ¥n € {0,1 }e(n)}neN and {Z,}nen, let
o(n) = 2{1”) [B(zn, Ee(xn)) = 1] = Pr [B(zn, Ee(yn)) = 1]

e+ e+—G(1M)4
We define distribution M, functions f, h and algorithm A that has no d(n)/4
simulator. The semantic security of (G, E, D) yields that 6(n) < neg(n).

Let f(x,) = 1 and f(y,) = 0, and let A(w) output 1 if B(w) = 1, and a uniform
bit otherwise.

Claim 9
Preca(1n); tr{xmyn} [A(Zn, Eo(tn)) = f(t)] = 3 + @ J
Proof:
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Semantic security —> Indistinguishability
For PPT B, {Xp, ¥n € {0,1 }e(n)}neN and {Z,}nen, let
o(n) = 2{1”) [B(zn, Ee(xn)) = 1] = Pr [B(zn, Ee(yn)) = 1]

e+ e+—G(1M)4
We define distribution M, functions f, h and algorithm A that has no d(n)/4
simulator. The semantic security of (G, E, D) yields that 6(n) < neg(n).

Let f(x,) = 1 and f(y,) = 0, and let A(w) output 1 if B(w) = 1, and a uniform
bit otherwise.

Claim 9
ProcG(1m)y tre oy} [A(Zn, Ee(t)) = f(tn)] = 3 + 5 J

Proof: Let a(n) = Pre.g(1n), [B(Zn, Ee(Xn)) = 1].
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Semantic security —> Indistinguishability
For PPT B, {Xp, ¥n € {0,1 }e(n)}neN and {Z,}nen, let

o(n) = eeFG)(r1")1 [B(zn, Ee(Xn)) = 1] - egg&n% [B(zn, Ee(yn)) = 1]

We define distribution M, functions f, h and algorithm A that has no d(n)/4
simulator. The semantic security of (G, E, D) yields that 6(n) < neg(n).

Let f(x,) = 1 and f(y,) = 0, and let A(w) output 1 if B(w) = 1, and a uniform
bit otherwise.

Claim 9
Preca(1n); tr{xmyn} [A(Zn, Eo(tn)) = f(t)] = 3 + @ J
Proof: Let a(n) = F)I’e(_c,;“n)1 [B(Zn7 Ee(Xn)) = 1]
_ _ L 1, an)
e<—g(r1n)1 [A(2n, Ee(Xn)) = f(Xn)] = a(n) + 2(1 a(n)) = 2 5
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o(n) = eeFG)(r1")1 [B(zn, Ee(Xn)) = 1] - (9Hg(r1n)1 [B(zn, Ee(yn)) = 1]

We define distribution M, functions f, h and algorithm A that has no d(n)/4
simulator. The semantic security of (G, E, D) yields that 6(n) < neg(n).

Let f(x,) = 1 and f(y,) = 0, and let A(w) output 1 if B(w) = 1, and a uniform
bit otherwise.

Claim 9
PrecG(1n)y e (xmpn} [A(Zns Eo(tn)) = (1)) = § + %2 J
Proof: Let a(n) = Pre.g(1n), [B(Zn, Ee(Xn)) = 1].
ol A0 Ee(xa)) = f(xa)] = a(n) + %(1 —a(n) = é (2 )
and
ectiny, AZn: Eelyn)) = 1(yn)] = % W 5 o(n)
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Semantic Security —- Indistinguishability, cont.

@ Let M, be x, w.p. , and y, otherwise.
@ Let h(1",-) = z,, and recall f(x,) = 1 and f(y,) = 0.

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography January 12-19, 2017 12/32



Semantic Security —- Indistinguishability, cont.

@ Let M, be x, w.p. , and y, otherwise.
@ Let h(1",-) = z,, and recall f(x,) =1 and f(y,) = 0.

By Claim 9:

Py TAC ). Eolm) = )] = 5+ 2D
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Semantic Security —- Indistinguishability, cont.

@ Let M, be x, w.p. , and y, otherwise.
@ Let h(1",-) = z,, and recall f(x,) =1 and f(y,) = 0.

By Claim 9:

P TR, ), Eo(m) = )] = 5+ 57

But, for any A’:

Pr [A'(h(17,m)) = f(m)] < 5

m<«—Mp,e<G(1")4
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Semantic Security —- Indistinguishability, cont.

@ Let M, be x, w.p. , and y, otherwise.
@ Let h(1",-) = z,, and recall f(x,) =1 and f(y,) = 0.

By Claim 9:

P TR, ), Eo(m) = )] = 5+ 57
But, for any A’:
Pr [A'(h(1",m)) = f(m)] < 5

m<«—Mp,e<G(1")4

Hence, d(n) < neg(n).
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Security under multiple encryptions
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Security under multiple encryptions
Definition 10 (Indistinguishablity for multiple encryptions — private-key
model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple
messages in the private-key model, if for any p, ¢, t € poly,

{Xn15 - Xy Yty -+ Ynaeny € {0, 1 D} new, {20 € {0,137} ey, PPTM B:

‘ Pr [B(Zn7 Ee(Xn1), ... Ee(Xn,t(n))) = 1]

e<—G(1")1
- Pr [B(zm Ee(Yn1),- - Ee(Yn,in))) = 1] ‘: neg(n)
e<~—G(17)4
v
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Security under multiple encryptions

Definition 10 (Indistinguishablity for multiple encryptions — private-key
model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple
messages in the private-key model, if for any p, ¢, t € poly,

{Xn15 - Xy Yty -+ Ynaeny € {0, 1 D} new, {20 € {0,137} ey, PPTM B:

‘e(—g(rﬁm [B(Zn, Ee(Xn,1 )7 OO Ee(XnJ(n))) = 1]

— e(_g(r:]n% [B(Zm Ee(yn,1 )7 e Ee(}’n,t(n))) = 1] ‘: neg(n)

Extensions:
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Security under multiple encryptions

Definition 10 (Indistinguishablity for multiple encryptions — private-key
model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple
messages in the private-key model, if for any p, ¢, t € poly,

{Xn15 - Xy Yty -+ Ynaeny € {0, 1 D} new, {20 € {0,137} ey, PPTM B:

‘e(—g(r1")1 I:B(zl'h Ee(Xn,1 )7 OO Ee(XnJ(n))) = 1]

— e<_g(|"1n)1 [B(Zm Ee(yn,1)7 e Ee(}’n,t(n))) = 1] ‘: neg(n)

Extensions:

@ Different length messages
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Security under multiple encryptions

Definition 10 (Indistinguishablity for multiple encryptions — private-key
model)

An encryption scheme (G, E, D) has indistinguishable encryptions for multiple
messages in the private-key model, if for any p, ¢, t € poly,

{Xn15 - Xy Yty -+ Ynaeny € {0, 1 D} new, {20 € {0,137} ey, PPTM B:

‘e(—g(r1")1 I:B(zl'h Ee(Xn,1 )7 OO Ee(XnJ(n))) = 1]

— e<_g(|"1n)1 [B(Zm Ee(yn,1)7 e Ee(Yn,t(n))) = 1] ‘: neg(n)

Extensions:
@ Different length messages
@ Semantic security version

@ Public-key variant
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Multiple encryptions in the Public-Key Model
Theorem 11

A public-key encryption scheme has indistinguishable encryptions for multiple
messages, iff it has indistinguishable encryptions for a single message.
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Multiple encryptions in the Public-Key Model
Theorem 11

A public-key encryption scheme has indistinguishable encryptions for multiple
messages, iff it has indistinguishable encryptions for a single message.

Proof: Let (G, E, D) be a public-key encryption scheme that has no
indistinguishable encryptions for multiple messages, with respect to PPT B,
{Xn s Xngnys Yoty Yntn) € {051 }Z(n)}neN, {zn € {0, 1}p(n)}neN-
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Multiple encryptions in the Public-Key Model

Theorem 11

A public-key encryption scheme has indistinguishable encryptions for multiple
messages, iff it has indistinguishable encryptions for a single message.

Proof: Let (G, E, D) be a public-key encryption scheme that has no
indistinguishable encryptions for multiple messages, with respect to PPT B,
{Xn.1, .. < Xn,t(n)s Yns -5 Ynen) € {0,1 }Z(n)}neN, {zn € {0, 1}p(n)}neN-
Hence, for some function i(n) € [t(n)]:

| PI’ I:B(1n, e, Ee(XnJ ), ey Ee(Xn7i_1 )7 Ee(yn’j) ceey Ee(ynvt(n))) - 1]

e+—G(1M)4

— Pr [B(1",6,Ee(Xn1), -, Ee(Xni), Ee(Yni+1) - s Ee(Vnt(n)) = 1] |

e+—G(1M)4

> neg(n).
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Multiple encryptions in the Public-Key Model

Theorem 11

A public-key encryption scheme has indistinguishable encryptions for multiple
messages, iff it has indistinguishable encryptions for a single message.

Proof: Let (G, E, D) be a public-key encryption scheme that has no
indistinguishable encryptions for multiple messages, with respect to PPT B,
{Xn.1, .. < Xn,t(n)s Yns -5 Ynen) € {0,1 }Z(n)}neN, {zn € {0, 1}p(n)}neN-
Hence, for some function i(n) € [t(n)]:

| PI’ I:B(1n, e, Ee(XnJ ), ey Ee(Xn7i_1 )7 Ee(yn’j) ey Ee(ynvt(n))) - 1]

e+—G(1M)4

— Pr [B(1",6,Ee(Xn1), -, Ee(Xni), Ee(Yni+1) - s Ee(Vnt(n)) = 1] |

e+—G(1M)4
> neg(n).
Thus, (G, E, D) has no indistinguishable encryptions for single message:
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Multiple encryptions in the Public-Key Model
Theorem 11

A public-key encryption scheme has indistinguishable encryptions for multiple
messages, iff it has indistinguishable encryptions for a single message.

Proof: Let (G, E, D) be a public-key encryption scheme that has no
indistinguishable encryptions for multiple messages, with respect to PPT B,
{Xn.1, .. < Xn,t(n)s Yns -5 Ynen) € {0,1 }Z(n)}neN, {zn € {0,1 }p(n)}neN-

Hence, for some function i(n) € [t(n)]:

|e<_(F5>(r1n) [B(1n, € Ee(Xn1), -, Ee(Xn,i-1), Ee(¥n,) - - -, Ee(}/n,t(n))) = 1]
- e<—(Fa>(r1n) [B(1na € Ee(Xn1), -, Ee(Xn.i), Ee(Yniv1) - s Ee(Vnt(n))) = 1] |
> neg(n).

Thus, (G, E, D) has no indistinguishable encryptions for single message:
Algorithm 12 (B')

Input: 17, z, = (i(n), X1, - - Xn,t(n)> Y15 - -+ > Ynt(n))s € 5C
Return B(C, Ee(Xn,1), 500 Ee(Xn7,'_1 )7 C, Ee(yn,i+1) coag Ee(yn,t(n)))

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography January 12-19, 2017 14/32



Multiple Encryption in the Private-Key Model

Fact 13
Assuming (non uniform) OWFs exists, then 3 encryption scheme that has
private-key indistinguishable encryptions for a single messages, but not for

multiple messages.
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Multiple Encryption in the Private-Key Model

Fact 13

Assuming (non uniform) OWFs exists, then 3 encryption scheme that has
private-key indistinguishable encryptions for a single messages, but not for
multiple messages.

Proof: Let g: {0,1}" — {0,1}™" be a (non-uniform) PRG, and for i € N let g’
be its "iterated extension" to output of length n + i (see Lecture 2).
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Multiple Encryption in the Private-Key Model

Fact 13

Assuming (non uniform) OWFs exists, then 3 encryption scheme that has
private-key indistinguishable encryptions for a single messages, but not for
multiple messages.

Proof: Let g: {0,1}" — {0,1}™" be a (non-uniform) PRG, and for i € N let g’
be its "iterated extension" to output of length n + i (see Lecture 2).

Construction 14
@ G(1"): outputs e «+ {0,1}"
@ E.(m): outputs ¢g!™(e) & m
@ D.(c): outputs g°/(e) @ ¢
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Multiple Encryption in the Private-Key Model, cont.

Claim 15
(G, E, D) has private-key indistinguishable encryptions for a single message J
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Multiple Encryption in the Private-Key Model, cont.
Claim 15

(G, E, D) has private-key indistinguishable encryptions for a single message J
Proof:
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Multiple Encryption in the Private-Key Model, cont.
Claim 15

(G, E, D) has private-key indistinguishable encryptions for a single message J

Proof: Assume not, and let B, {x,, y, € {0,1}M} cyy and {z, € {0,1}P(M} i
be the triplet that realizes it:
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Multiple Encryption in the Private-Key Model, cont.
Claim 15

(G, E, D) has private-key indistinguishable encryptions for a single message J

Proof: Assume not, and let B, {x,, y, € {0,1}M} cyy and {z, € {0,1}P(M} i
be the triplet that realizes it:

Pr[B(2n, " (Up) @ Xn) = 1] — Pr[B(zn, g (Un) @ yn) = 1]|> neg(n) (1)

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography January 12-19, 2017 16/32



Multiple Encryption in the Private-Key Model, cont.
Claim 15

(G, E, D) has private-key indistinguishable encryptions for a single message J

Proof: Assume not, and let B, {x,, y, € {0,1}M} cyy and {z, € {0,1}P(M} i
be the triplet that realizes it:

Pr[B(2n, " (Up) @ Xn) = 1] — Pr[B(zn, g (Un) @ yn) = 1]|> neg(n) (1)

Hence, B yields a (non-uniform) distinguisher for g. (?)
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Multiple Encryption in the Private-Key Model, cont.

Claim 15
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be the triplet that realizes it:

Pr[B(2n, " (Up) @ Xn) = 1] — Pr[B(zn, g (Un) @ yn) = 1]|> neg(n) (1)
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(G, E, D) does not have a private-key indistinguishable encryptions for
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multiple messages J
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Multiple Encryption in the Private-Key Model, cont.

Claim 15
(G, E, D) has private-key indistinguishable encryptions for a single message J

Proof: Assume not, and let B, {x,, y, € {0,1}M} cyy and {z, € {0,1}P(M} i
be the triplet that realizes it:

Pr[B(2n, " (Up) @ Xn) = 1] — Pr[B(zn, g (Un) @ yn) = 1]|> neg(n) (1)

Hence, B yields a (non-uniform) distinguisher for g. (?)

(G, E, D) does not have a private-key indistinguishable encryptions for

Claim 16
multiple messages J

Proof:
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Multiple Encryption in the Private-Key Model, cont.

Claim 15
(G, E, D) has private-key indistinguishable encryptions for a single message J

Proof: Assume not, and let B, {x,, y, € {0,1}M} cyy and {z, € {0,1}P(M} i
be the triplet that realizes it:

Pr[B(2n, 9" (Un) ® Xn) = 1] — Pr[B(2n, " (U,) @ yn) = 1]|> neg(n) (1)

Hence, B yields a (non-uniform) distinguisher for g. (?)

Claim 16

(G, E, D) does not have a private-key indistinguishable encryptions for
multiple messages

Proof: Take X1 = Xp2 and yn 1 # yn2, and let B be the algorithm that on input
(c1,c0), outputs 1 iff ¢1 = ¢,.00

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography January 12-19, 2017 16/32



Section 2

Constructions
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Private-Key Indistinguishable Encryptions for Multiple Messages

Suffices to encrypt messages of some fixed length (here the length is n).(?)
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Private-Key Indistinguishable Encryptions for Multiple Messages
Suffices to encrypt messages of some fixed length (here the length is n).(?)

Let F be a (non-uniform) length-preserving PRF
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Private-Key Indistinguishable Encryptions for Multiple Messages

Suffices to encrypt messages of some fixed length (here the length is n).(?)
Let F be a (non-uniform) length-preserving PRF
Construction 17

@ G(1"): output e < F,

@ E.(m): choose r + {0,1}" and output (r, e(r) & m)
@ Dg(r,c): output e(r) ® c
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Private-Key Indistinguishable Encryptions for Multiple Messages

Suffices to encrypt messages of some fixed length (here the length is n).(?)
Let F be a (non-uniform) length-preserving PRF
Construction 17

@ G(1™): output e «+ F,

@ E.(m): choose r + {0,1}" and output (r, e(r) & m)
@ Dg(r,c): output e(r) ® c

Claim 18

(G, E, D) has private-key indistinguishable encryptions for a multiple
messages
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Private-Key Indistinguishable Encryptions for Multiple Messages
Suffices to encrypt messages of some fixed length (here the length is n).(?)

Let F be a (non-uniform) length-preserving PRF
Construction 17
@ G(1™): output e «+ F,

@ E.(m): choose r + {0,1}" and output (r, e(r) & m)

@ Dg(r,c): output e(r) ® c

Claim 18

(G, E, D) has private-key indistinguishable encryptions for a multiple
messages

Proof: ?
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Public-key indistinguishable encryptions for multiple messages

Let (Gr, f, Inv) be a (non-uniform) TDP, and let b be hardcore predicate for it.
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Public-key indistinguishable encryptions for multiple messages

Let (Gr, f, Inv) be a (non-uniform) TDP, and let b be hardcore predicate for it.
Construction 19 (bit encryption)

@ G(1™): output (e, d) « Gr(17)

@ E.(m): choose r + {0,1}" and output (y = fo(r),c = b(r) & m)

@ Dy(y,c): output b(Invy(y)) & ¢
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Public-key indistinguishable encryptions for multiple messages
Let (Gr, f, Inv) be a (non-uniform) TDP, and let b be hardcore predicate for it.

Construction 19 (bit encryption)
@ G(1M): output (e, d) + Gr(1")

@ E.(m): choose r + {0,1}" and output (y = fo(r), c = b(r) & m)
@ Dy(y, c): output b(Invgy(y)) & c

Claim 20
(G, E, D) has public-key indistinguishable encryptions for a multiple messages
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Public-key indistinguishable encryptions for multiple messages

Let (Gr, f, Inv) be a (non-uniform) TDP, and let b be hardcore predicate for it.
Construction 19 (bit encryption)

@ G(1"): output (e, d) «+ Gr(1")

@ Eq(m): choose r < {0,1}" and output (y = fs(r),c = b(r) & m)

@ Dy(y, c): output b(Invgy(y)) & c

Claim 20
(G, E, D) has public-key indistinguishable encryptions for a multiple messages

Proof:

We believe that public-key encryptions schemes are “more complex" than
private-key ones
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Section 3

Active adversaries
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Active adversaries
@ Chosen plaintext attack (CPA):

The adversary can ask for encryption and choose the messages to
distinguish accordingly
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@ Chosen ciphertext attack (CCA):
The adversary can also ask for decryptions of certain messages
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Active adversaries

@ Chosen plaintext attack (CPA):

The adversary can ask for encryption and choose the messages to
distinguish accordingly

@ Chosen ciphertext attack (CCA):
The adversary can also ask for decryptions of certain messages

@ In the public-key settings, the adversary is also given the public key
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Active adversaries

@ Chosen plaintext attack (CPA):

The adversary can ask for encryption and choose the messages to
distinguish accordingly

@ Chosen ciphertext attack (CCA):
The adversary can also ask for decryptions of certain messages

@ In the public-key settings, the adversary is also given the public key

@ We focus on indistinguishability, but each of the above definitions has an
equivalent semantic security variant.
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CPA security

Let (G, E, D) be an encryption scheme. For a pair of algorithms A = (A1, Az),

neN,ze{0,1}* and b € {0,1}, let:
Experiment 21 (Expgr (b))

Q (e,d)« G(1")

Q (mo,my,s) « Af_e(')(1”,z), where |mg| = |my].

Q c«+ Ee(mp)
© Output AZEE(')(1",S, c)
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CPA security

Let (G, E, D) be an encryption scheme. For a pair of algorithms A = (A1, Az),
neN,ze{0,1}* and b € {0,1}, let:

Experiment 21 (Expgr (b))

Q (e, d) « G(1")

Q (mo, my, s) « AV (17, 2), where |mg| = |my].
Q ¢« Ee(mp)

© Output AZEE(')(1"7S, c)

Definition 22 (private key CPA)
(G, E, D) has indistinguishable encryptions in the private-key model under
CPA attack, if V PPT Aq, Az, and poly-bounded {z,} en:

| PrEXpR, (0) = 11— PrExpRy, (1) = 11| = neg(n)

A,n,zp A,n,zp

y
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CPA security, cont.

@ public-key variant.

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography



CPA security, cont.

@ public-key variant.

@ The scheme from Construction 17 has indistinguishable encryptions in
the private-key model under CPA attack (for short, private-key CPA
secure)
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CPA security, cont.

@ public-key variant.

@ The scheme from Construction 17 has indistinguishable encryptions in
the private-key model under CPA attack (for short, private-key CPA
secure)

@ The scheme from Construction 19 has indistinguishable encryptions in
the public-key model under CPA attack (for short, public-key CPA secure)
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CPA security, cont.

@ public-key variant.

@ The scheme from Construction 17 has indistinguishable encryptions in
the private-key model under CPA attack (for short, private-key CPA
secure)

@ The scheme from Construction 19 has indistinguishable encryptions in
the public-key model under CPA attack (for short, public-key CPA secure)

@ In both cases, definitions are not equivalent (?)
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CCA Security

Experiment 23 (Exp§ s (b))

Q (e d) « G(1")

Q (mg, my,s) « AfE(')’D"(')(W,z), where |mg| = |my].
©Q c <+ Ec(mp)

Q Output AZV(17 s, ¢)
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CCA Security

Experiment 23 (ExpgGy (b))
Q (e.d) « G(1")

Q (mo, my, s) + AFP(1n Z), where |mg| = |m].
©Q c <+ Ec(mp)
Q Output AZV(17 s, ¢)

Experiment 24 (Expgf;’,’?‘zzn(b))

Q (e, d) « G(1")

Q (my,my,s) « Afe(')’Dd(‘)U”,z), where |mg| = |my].
Q ¢« Ec(mp)

© Output Afe(')’D;c(')U n's,C)

4
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CCA Security, cont.

Definition 25 (private key CCA1/CCA2)

(G, E, D) has indistinguishable encryptions in the private-key model under
x € {CCA1,CCA2} attack, if V PPT Ay, A2, and poly-bounded {z,}nen:

| PrIEXPA £, (0) = 1] — Pr[Expa , 5, (1) = 1]| = neg(n)
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CCA Security, cont.

Definition 25 (private key CCA1/CCA2)

(G, E, D) has indistinguishable encryptions in the private-key model under
x € {CCA1,CCA2} attack, if V PPT Ay, A2, and poly-bounded {z,}nen:

| PrIEXPA £, (0) = 1] — Pr[Expa , 5, (1) = 1]| = neg(n)

@ The public key definition is analogous
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Private-key CCA2
@ |s the scheme from Construction 17 private-key CCA1 secure?
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Private-key CCA2
@ Is the scheme from Construction 17 private-key CCA1 secure?
@ CCA2 secure?

Let (G, E, D) be a private-key CPA scheme, and let (Geny, Mac, Vrfy) be an
existential unforgeable strong MAC.
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Private-key CCA2

@ Is the scheme from Construction 17 private-key CCA1 secure?
@ CCA2 secure?

Let (G, E, D) be a private-key CPA scheme, and let (Geny, Mac, Vrfy) be an
existential unforgeable strong MAC.

Construction 26
@ G’(17): Output (e + Gg(1"), k + Geny(1M)).2
@ E, ,(m): let c = E¢(m) and output (¢, t = Mack(c))

@ Dg«(c,t):if Vry,(c, t) = 1, output De(c). Otherwise, output L

2We assume wlg. that the encryption and decryption keys are the same.
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Private-key CCA2

@ Is the scheme from Construction 17 private-key CCA1 secure?
@ CCA2 secure?

Let (G, E, D) be a private-key CPA scheme, and let (Geny, Mac, Vrfy) be an
existential unforgeable strong MAC.

Construction 26
@ G/(1"): Output (e < Gg(17), k < Geny(1M)).2
@ E, ,(m): let c = E¢(m) and output (¢, t = Mack(c))

@ Dg«(c,t):if Vry,(c, t) = 1, output De(c). Otherwise, output L

2We assume wlg. that the encryption and decryption keys are the same.

Theorem 27
Construction 26 is a private-key CCA2-secure encryption scheme.
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Private-key CCA2

@ Is the scheme from Construction 17 private-key CCA1 secure?
@ CCA2 secure?

Let (G, E, D) be a private-key CPA scheme, and let (Geny, Mac, Vrfy) be an
existential unforgeable strong MAC.

Construction 26
@ G/(1"): Output (e < Gg(17), k < Geny(1M)).2
@ E, ,(m): let c = E¢(m) and output (¢, t = Mack(c))

@ Dg«(c,t):if Vry,(c, t) = 1, output De(c). Otherwise, output L

2We assume wlg. that the encryption and decryption keys are the same.

Theorem 27

Construction 26 is a private-key CCA2-secure encryption scheme.

Proof:
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Private-key CCA2
@ Is the scheme from Construction 17 private-key CCA1 secure?
@ CCA2 secure?

Let (G, E, D) be a private-key CPA scheme, and let (Geny, Mac, Vrfy) be an
existential unforgeable strong MAC.

Construction 26
@ G'(17): Output (e <~ Ge(1"), k « Geny(17)).2
@ E, ,(m): let c = E¢(m) and output (¢, t = Mack(c))
@ Dg«(c,t):if Vry,(c, t) = 1, output De(c). Otherwise, output L

2We assume wlg. that the encryption and decryption keys are the same.

Theorem 27
Construction 26 is a private-key CCA2-secure encryption scheme.

Proof: An attacker on the CCA2-security of (G’, E’, D’) yields an attacker on
the CPA security of (G, E, D), or the existential unforgettably of
(Geny, Mac, Vrfy).
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Public-key CCA1
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Public-key CCA1

Let (G, E, D) be a public-key CPA scheme and let (P, V) be a NZZK for
L = {(co, c1, pko, pki): (M, 2o, 21) s.t. Co = Epr, (M, 20) A €1 = Epk, (M, 21) }
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Public-key CCA1

Let (G, E, D) be a public-key CPA scheme and let (P, V) be a NZZK for
L = {(co, c1, pko, pki): (M, 2o, 21) s.t. Co = Epr, (M, 20) A €1 = Epk, (M, 21) }

Construction 28 (Naor-Yung)
@ G'(1"):

@ Foric {0,1}: set (ski, pk;) + G(17).
Q Letr « {0,1}¥(", and output pk’ = (pko, pk1, r) and
sk’ = (pk’, sko, Ski)

@ Ej (m):

@ Forie {0,1}: set ci = Epi(m, z;), where z; is a uniformly chosen
string of the right length

Q 7+ P((co, c1, pko, pki), (M, 2o, 21), 1)
© Output (¢, ¢y, 7).

@ D, (co,cq,m): It V((co, ¢y, pko, pki), m,r) = 1, return Dgk, (o).
Otherwise, return L.
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Public-key CCA1, cont.

@ We assume for simplicity that the encryption key output by G(1”) is of
length at least n. (?)

@ (is an arbitrary polynomial, and determines the maximum message
length to encrypt using “security parameter” n.
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@ We assume for simplicity that the encryption key output by G(1”) is of
length at least n. (?)

@ (is an arbitrary polynomial, and determines the maximum message
length to encrypt using “security parameter” n.

Is the scheme CCA1 secure?
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Public-key CCA1, cont.

@ We assume for simplicity that the encryption key output by G(1”) is of
length at least n. (?)

@ (is an arbitrary polynomial, and determines the maximum message
length to encrypt using “security parameter” n.

Is the scheme CCA1 secure?
Theorem 29

Assuming (P, V) is adaptive secure, then Consiruction 28 is a public-key
CCA1 secure encryption scheme.

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography January 12-19, 2017 28/32



Public-key CCA1, cont.

@ We assume for simplicity that the encryption key output by G(1”) is of
length at least n. (?)

@ (is an arbitrary polynomial, and determines the maximum message
length to encrypt using “security parameter” n.

Is the scheme CCA1 secure?

Theorem 29

Assuming (P, V) is adaptive secure, then Consiruction 28 is a public-key
CCA1 secure encryption scheme.

Proof: Given an attacker A’ for the CCA1 security of (G’,E’, D), we use it to
construct an attacker A on the CPA security of (G, E, D) or the adaptive
security of (P, V).
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Proving Thm 29
Let S = (S4, Sy) be the (adaptive) simulator for (P, V, L)

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography



Proving Thm 29

Let S = (S4, Sy) be the (adaptive) simulator for (P, V, L)
Algorithm 30 (A)

Input: (17, pk)
@ Letj <« {0,1}, pki_j = pk, (pkj, skj) < G(1") and (r, s) + S1(1")
© Emulate A’/(17, pk’ = (pko, pki, r)):

On query (co, ¢y, ) of A’ to D”:

If V((co, 1, Pko, Pki), T, r) = 1, answer Dg ().
Otherwise, answer L.

© Output the pair (mg, my) that A’ outputs
© On challenge ¢ ( = Epk(mp)):
» Setci_j = ¢, ¢ = Ep(my) for a+ {0,1}, and

T < 82((00; C17pk0apk1)a r, s)
» Send ¢’ = (co, C1, ) to A

@ Output the value that A’ does
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Proving Thm 29, cont.

Claim 31

Assume A’ breaks the CCA1 security of (G’, E’, D) w.p. 6(n), then A breaks
the CPA security of (G, E,D) w.p. (6(n) — neg(n))/2.
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Proving Thm 29, cont.

Claim 31

Assume A’ breaks the CCA1 security of (G’, E’, D) w.p. 6(n), then A breaks
the CPA security of (G, E,D) w.p. (6(n) — neg(n))/2.

The adaptive soundness and adaptive zero-knowledge of (P, V), yields that
Pr[A” “makes" A(1") decrypt an invalid cipher] = neg(n) (2)
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Proving Thm 29, cont.

Claim 31

Assume A’ breaks the CCA1 security of (G’, E’, D’) w.p. §(n), then A breaks
the CPA security of (G, E,D) w.p. (6(n) — neg(n))/2.

The adaptive soundness and adaptive zero-knowledge of (P, V), yields that
Pr[A” “makes" A(1") decrypt an invalid cipher] = neg(n) (2)

Assume for simplicity that the above prob is 0.

Benny Applebaum  Iftach Haitner (TAU) Foundation of Cryptography January 12-19, 2017 30/32
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Claim 31

Assume A’ breaks the CCA1 security of (G’, E’, D’) w.p. §(n), then A breaks
the CPA security of (G, E,D) w.p. (6(n) — neg(n))/2.

The adaptive soundness and adaptive zero-knowledge of (P, V), yields that
Pr[A” “makes" A(1") decrypt an invalid cipher] = neg(n) (2)

Assume for simplicity that the above prob is 0.
Hence, in the first the emulation of A’ is perfect and leaks no information
about j.
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Proving Thm 29, cont.

Claim 31

Assume A’ breaks the CCA1 security of (G’,E’,D’) w.p. §(n), then A breaks
the CPA security of (G, E,D) w.p. (6(n) — neg(n))/2.

The adaptive soundness and adaptive zero-knowledge of (P, V), yields that
Pr[A” “makes" A(1") decrypt an invalid cipher] = neg(n) (2)

Assume for simplicity that the above prob is 0.
Hence, in the first the emulation of A’ is perfect and leaks no information
about j.

Let A’(17 x, y) be A”’s output in the emulation induced by A(1"), conditioned
ona=xandb=y.
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Proving Thm 29, cont.

Claim 31

Assume A’ breaks the CCA1 security of (G’,E’,D’) w.p. §(n), then A breaks
the CPA security of (G, E,D) w.p. (6(n) — neg(n))/2.

The adaptive soundness and adaptive zero-knowledge of (P, V), yields that
Pr[A” “makes" A(1") decrypt an invalid cipher] = neg(n) (2)

Assume for simplicity that the above prob is 0.
Hence, in the first the emulation of A’ is perfect and leaks no information
about j.

Let A’(17 x, y) be A”’s output in the emulation induced by A(1"), conditioned
ona=xandb=y.

@ Since no information about j has leaked, A’(17,0,1) = A’(1",1,0)
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Proving Thm 29, cont.

Claim 31

Assume A’ breaks the CCA1 security of (G’,E’,D’) w.p. §(n), then A breaks
the CPA security of (G, E,D) w.p. (6(n) — neg(n))/2.

The adaptive soundness and adaptive zero-knowledge of (P, V), yields that
Pr[A” “makes" A(1") decrypt an invalid cipher] = neg(n) (2)

Assume for simplicity that the above prob is 0.
Hence, in the first the emulation of A’ is perfect and leaks no information
about j.

Let A’(17 x, y) be A”’s output in the emulation induced by A(1"), conditioned
ona=xandb=y.

@ Since no information about j has leaked, A’(17,0,1) = A’(1",1,0)

© The adaptive zero-knowledge of (P, V) yields that
[PriA’(17,1,1) =1] — Pr[A’(1",0,0) = 1]| > 6(n) — neg(n)
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Proving Thm 29, cont..

Let A(x) be A’s output on challenge Ep«(my) (and security parameter 17).
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Proving Thm 29, cont..

Let A(x) be A’s output on challenge Ep«(my) (and security parameter 17).

PrIA(1) = 1] = Pr[A(0) = 1]]
= %(Pr[A’(O, 1) =1]+PrA’(1,1) = 1]) — %(Pr[A’(O, 0) = 1]+ Pr[A’(1,0) = 1])
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Proving Thm 29, cont..

Let A(x) be A’s output on challenge Ep«(my) (and security parameter 17).
IPrlA(1) = 1] — Pr[A(0) = 1]|
= %(Pr[A’(OJ) =1]+Pr[A’(1,1) =1]) — %(Pr[A’(0,0) =1]+Pr[A’(1,0) = 1])

> ! |Pr[A’(1,1) = 1] — Pr[A’(0,0) = 1]| — % |Pr[A’(1,0) = 1] — Pr[A’(0,1) = 1]|

N
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Proving Thm 29, cont..

Let A(x) be A’s output on challenge Ep«(my) (and security parameter 17).

PrIA(1) = 1] = Pr[A(0) = 1]]
= %(Pr[A’(O, 1) =1]+PrA’(1,1) = 1]) — %(Pr[A’(O, 0) = 1]+ Pr[A’(1,0) = 1])

> % IPr{A'(1,1) = 1] — Pr[A’(0,0) = 1]| — % Pr{A’(1,0) = 1] — Pr[A’(0, 1) = 1]|
> (6(n) —neg(n))/2 -0
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Public-key CCA2

@ Is Construction 28 CCA2 secure?
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Public-key CCA2

@ |s Construction 28 CCA2 secure?

@ Problem: Soundness might not hold with respect to the simulated CRS,
after seeing a proof for an invalid statement
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Public-key CCA2

@ |s Construction 28 CCA2 secure?

@ Problem: Soundness might not hold with respect to the simulated CRS,
after seeing a proof for an invalid statement

@ Solution: use simulation sound NZZK
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