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Correctness

Definition 1 (encryption scheme)

A trippet of PPTM’s (G,E,D) such that

1 G(1n) outputs (e,d) ∈ {0,1}∗ × {0,1}∗

2 E(e,m) outputs c ∈ {0,1}∗

3 D(d , c) outputs m ∈ {0,1}∗

Correctness: D(d ,E(e,m)) = m, for any (e,d) ∈ Supp(G(1n)) and
m ∈ {0,1}∗

e – encryption key, d – decryption key

m – plaintext, c = E(e,m) – ciphertext

Ee(m) ≡ E(e,m) and Dd (c) ≡ D(d , c),

public/private key
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Security

What would we like to achieve?

Attempt: for any m ∈ {0,1}∗:

(m,E(G(1n)1)(m)) ≡ (m,U`(|m|))

I Shannon – only possible in case |m| ≤ |G(1n)1|
I Other concerns: multiple encryptions, active adversaries, . . .
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Semantic security

1 Ciphertext reveals no "computational information" about the plaintext

2 Formulate via the simulation paradigm

3 Does not hide the message length
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Semantic security

Definition 2 (Semantic Security — private-key model)

An encryption scheme (G,E,D) is semantically secure in the private-key
model, if ∀ PPTM A, ∃ PPTM A′ s.t. :
∀ poly-length dist. ensembleM = {Mn}n∈N and poly-length functions
h, f : {0,1}∗ 7→ {0,1}∗∣∣ Pr

m←Mn,e←G(1n)1

[A(1n,1|m|,h(1n,m),Ee(m)) = f (1n,m)]

− Pr
m←Mn

[A′(1n,1|m|,h(1n,m)) = f (1n,m)]
∣∣= neg(n)

Non uniformity is inherent.

Public-key variant — A and A′ get e

Reflection to ZK

We sometimes omit 1n and 1|m|
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Indistinguishablity of encryptions

The encryption of two strings is indistinguishable

Less intuitive than semantic security, but easier to work with

Definition 3 (Indistinguishablity of encryptions — private-key model)

An encryption scheme (G,E,D) has indistinguishable encryptions in the
private-key model, if for any p, ` ∈ poly, {xn, yn ∈ {0,1}`(n)}n∈N and
{zn ∈ {0,1}p(n)}n∈N

{(zn,Ee(xn))e←G(1n)1}n∈N ≈c {(zn,Ee(yn))e←G(1n)1}n∈N

Non uniformity is inherent.

Public-key variant — the ensemble contains e
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Equivalence of definitions

Theorem 4

An encryption scheme (G,E,D) is semantically secure iff is has
indistinguishable encryptions.

We prove the private key case
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Indistinguishability =⇒ Semantic security

FixM, A, f and h, as in Definition 2.

Algorithm 5 (A′)

Input: 1n, 1|m| and h(m)

1 e← G(1n)1

2 c = Ee(1|m|)

3 Output A(1n,1|m|,h(m), c)

Claim 6
A′ is a good simulator for A (according to Definition 2)

Proof: Let

δ(n) := Pr
m←Mn,e←G(1n)1

[A(h(m),Ee(m)) = f (m)]− Pr
m←Mn

[A′(h(m)) = f (m)]

We define an algorithm that distinguishes two between two ensembles
{xn}n∈N and {yn}n∈N, with advantage δ(n).

Hence, the indistinguishability of (G,E,D) yields that δ(n) ≤ neg(n).
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The distinguisher

Claim 7
For every n ∈ N, exists xn ∈ Supp(Mn) with
Pre←G(1n)1 [A(h(xn),Ee(xn)) = f (xn)]− Pr [A′(h(xn)) = f (xn)] ≥ δ(n).

Proof: ?
We consider indistinguishability of {xn} vs. {1|xn|}, wrt advice
{zn = (1n,1|xn|,h(xn), f (xn))}n∈N and distinguisher

Algorithm 8 (B)

Input: z = (1n,1t ,h′, f ′), c
Output 1 iff A(1n,1t ,h′, c) = f ′

Analysis:

Pre←G(1n) [B(zn,Ee(xn)) = 1] =
Pre←G(1n)1

[
A(1n,1|xn|,h(xn),Ee(xn)) = f (xn)

]
Pre←G(1n)

[
B(zn,Ee(1|xn|)) = 1

]
= Pr

[
A′(1n,1|xn|,h(xn)) = f (xn)

]

Hence, Pre←G(1n) [B(zn,Ee(xn)) = 1]− Pre←G(1n)

[
B(zn,Ee(1|xn|)) = 1

]
≥ δ(n).
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Semantic security =⇒ Indistinguishability

For PPT B, {xn, yn ∈ {0,1}`(n)}n∈N and {zn}n∈N, let

δ(n) = Pr
e←G(1n)1

[B(zn,Ee(xn)) = 1]− Pr
e←G(1n)1

[B(zn,Ee(yn)) = 1]

We define distributionM, functions f ,h and algorithm A that has no δ(n)/4

simulator. The semantic security of (G,E,D) yields that δ(n) ≤ neg(n).

Let f (xn) = 1 and f (yn) = 0, and let A(w) output 1 if B(w) = 1, and a uniform
bit otherwise.

Claim 9

Pre←G(1n)1,tn←{xn,yn} [A(zn,Ee(tn)) = f (tn)] = 1
2 + δ(n)

4

Proof: Let α(n) = Pre←G(1n)1 [B(zn,Ee(xn)) = 1].

Pr
e←G(1n)1

[A(zn,Ee(xn)) = f (xn)] = α(n) +
1
2
(1− α(n)) = 1

2
+
α(n)

2

and
Pr

e←G(1n)1

[A(zn,Ee(yn)) = f (yn)] =
1
2
+
δ(n)− α(n)

2
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Semantic Security =⇒ Indistinguishability, cont.

LetMn be xn w.p. 1
2 , and yn otherwise.

Let h(1n, ·) = zn, and recall f (xn) = 1 and f (yn) = 0.

By Claim 9:

Pr
m←Mn,e←G(1n)1

[A(h(1n,m),Ee(m)) = f (m)] =
1
2
+
δ(n)

2

But, for any A′:

Pr
m←Mn,e←G(1n)1

[A′(h(1n,m)) = f (m)] ≤ 1
2

Hence, δ(n) ≤ neg(n).
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Security under multiple encryptions

Definition 10 (Indistinguishablity for multiple encryptions – private-key
model)

An encryption scheme (G,E,D) has indistinguishable encryptions for multiple
messages in the private-key model, if for any p, `, t ∈ poly,
{xn,1, . . . xn,t(n), yn,1, . . . , yn,t(n) ∈ {0,1}`(n)}n∈N, {zn ∈ {0,1}p(n)}n∈N, PPTM B:∣∣ Pr

e←G(1n)1

[
B(zn,Ee(xn,1), . . .Ee(xn,t(n))) = 1

]
− Pr

e←G(1n)1

[
B(zn,Ee(yn,1), . . .Ee(yn,t(n))) = 1

] ∣∣= neg(n)

Extensions:

Different length messages

Semantic security version

Public-key variant
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Multiple encryptions in the Public-Key Model

Theorem 11
A public-key encryption scheme has indistinguishable encryptions for multiple
messages, iff it has indistinguishable encryptions for a single message.

Proof: Let (G,E,D) be a public-key encryption scheme that has no
indistinguishable encryptions for multiple messages, with respect to PPT B,
{xn,1, . . . xn,t(n), yn,1, . . . , yn,t(n) ∈ {0,1}`(n)}n∈N, {zn ∈ {0,1}p(n)}n∈N.

Hence, for some function i(n) ∈ [t(n)]:∣∣ Pr
e←G(1n)1

[
B(1n,e,Ee(xn,1), . . . ,Ee(xn,i−1),Ee(yn,i) . . . ,Ee(yn,t(n))) = 1

]
− Pr

e←G(1n)1

[
B(1n,e,Ee(xn,1), . . . ,Ee(xn,i),Ee(yn,i+1) . . . ,Ee(yn,t(n))) = 1

] ∣∣
> neg(n).

Thus, (G,E,D) has no indistinguishable encryptions for single message:

Algorithm 12 (B′)

Input: 1n, zn = (i(n), xn,1, . . . xn,t(n), yn,1, . . . , yn,t(n)), e ,c
Return B(c,Ee(xn,1), . . . ,Ee(xn,i−1), c,Ee(yn,i+1) . . . ,Ee(yn,t(n)))
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Multiple Encryption in the Private-Key Model

Fact 13
Assuming (non uniform) OWFs exists, then ∃ encryption scheme that has
private-key indistinguishable encryptions for a single messages, but not for
multiple messages.

Proof: Let g : {0,1}n 7→ {0,1}n+1 be a (non-uniform) PRG, and for i ∈ N let g i

be its ”iterated extension" to output of length n + i (see Lecture 2).

Construction 14

G(1n): outputs e← {0,1}n

Ee(m): outputs g|m|(e)⊕m

De(c): outputs g|c|(e)⊕ c
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Multiple Encryption in the Private-Key Model, cont.

Claim 15
(G,E,D) has private-key indistinguishable encryptions for a single message

Proof: Assume not, and let B, {xn, yn ∈ {0,1}`(n)}n∈N and {zn ∈ {0,1}p(n)}n∈N
be the triplet that realizes it:∣∣Pr[B(zn,g`(n)(Un)⊕ xn) = 1]− Pr[B(zn,g`(n)(Un)⊕ yn) = 1]

∣∣> neg(n) (1)

Hence, B yields a (non-uniform) distinguisher for g. (?)

Claim 16
(G,E,D) does not have a private-key indistinguishable encryptions for
multiple messages

Proof: Take xn,1 = xn,2 and yn,1 6= yn,2, and let B be the algorithm that on input
(c1, c2), outputs 1 iff c1 = c2.
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Section 2

Constructions
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Private-Key Indistinguishable Encryptions for Multiple Messages

Suffices to encrypt messages of some fixed length (here the length is n).(?)

Let F be a (non-uniform) length-preserving PRF

Construction 17

G(1n): output e← Fn

Ee(m): choose r ← {0,1}n and output (r ,e(r)⊕m)

De(r , c): output e(r)⊕ c

Claim 18
(G,E,D) has private-key indistinguishable encryptions for a multiple
messages

Proof: ?
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Public-key indistinguishable encryptions for multiple messages

Let (GT , f , Inv) be a (non-uniform) TDP, and let b be hardcore predicate for it.

Construction 19 (bit encryption)

G(1n): output (e,d)← GT (1n)

Ee(m): choose r ← {0,1}n and output (y = fe(r), c = b(r)⊕m)

Dd (y , c): output b(Invd (y))⊕ c

Claim 20
(G,E,D) has public-key indistinguishable encryptions for a multiple messages

Proof:

We believe that public-key encryptions schemes are “more complex" than
private-key ones
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Section 3

Active adversaries
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Active adversaries

Chosen plaintext attack (CPA):
The adversary can ask for encryption and choose the messages to
distinguish accordingly

Chosen ciphertext attack (CCA):
The adversary can also ask for decryptions of certain messages

In the public-key settings, the adversary is also given the public key

We focus on indistinguishability, but each of the above definitions has an
equivalent semantic security variant.
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CPA security

Let (G,E,D) be an encryption scheme. For a pair of algorithms A = (A1,A2),
n ∈ N, z ∈ {0,1}∗ and b ∈ {0,1}, let:

Experiment 21 (ExpCPA
A,n,z(b))

1 (e,d)← G(1n)

2 (m0,m1, s)← AEe(·)
1 (1n, z), where |m0| = |m1|.

3 c ← Ee(mb)

4 Output AEe(·)
2 (1n, s, c)

Definition 22 (private key CPA)

(G,E,D) has indistinguishable encryptions in the private-key model under
CPA attack, if ∀ PPT A1,A2, and poly-bounded {zn}n∈N:

|Pr[ExpCPA
A,n,zn

(0) = 1]− Pr[ExpCPA
A,n,zn

(1) = 1]| = neg(n)
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CPA security, cont.

public-key variant.

The scheme from Construction 17 has indistinguishable encryptions in
the private-key model under CPA attack (for short, private-key CPA
secure)

The scheme from Construction 19 has indistinguishable encryptions in
the public-key model under CPA attack (for short, public-key CPA secure)

In both cases, definitions are not equivalent (?)
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CCA Security

Experiment 23 (ExpCCA1
A,n,z (b))

1 (e,d)← G(1n)

2 (m0,m1, s)← AEe(·),Dd (·)
1 (1n, z), where |m0| = |m1|.

3 c ← Ee(mb)

4 Output AEe(·)
2 (1n, s, c)

Experiment 24 (ExpCCA2
A,n,zn

(b))

1 (e,d)← G(1n)

2 (m0,m1, s)← AEe(·),Dd (·)
1 (1n, z), where |m0| = |m1|.

3 c ← Ee(mb)

4 Output AEe(·),D¬c
d (·)

2 (1n, s, c)
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CCA Security, cont.

Definition 25 (private key CCA1/CCA2)

(G,E,D) has indistinguishable encryptions in the private-key model under
x ∈ {CCA1,CCA2} attack, if ∀ PPT A1,A2, and poly-bounded {zn}n∈N:

|Pr[Expx
A,n,zn

(0) = 1]− Pr[Expx
A,n,zn

(1) = 1]| = neg(n)

The public key definition is analogous
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Private-key CCA2

Is the scheme from Construction 17 private-key CCA1 secure?

CCA2 secure?

Let (G,E,D) be a private-key CPA scheme, and let (GenM ,Mac,Vrfy) be an
existential unforgeable strong MAC.

Construction 26

G′(1n): Output (e← GE(1n), k ← GenM(1n)).a

E′e,k (m): let c = Ee(m) and output (c, t = Mack (c))

De,k (c, t): if Vrfyk (c, t) = 1, output De(c). Otherwise, output ⊥
aWe assume wlg. that the encryption and decryption keys are the same.

Theorem 27
Construction 26 is a private-key CCA2-secure encryption scheme.

Proof: An attacker on the CCA2-security of (G′,E′,D′) yields an attacker on
the CPA security of (G,E,D), or the existential unforgettably of
(GenM ,Mac,Vrfy).
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Public-key CCA1

Let (G,E,D) be a public-key CPA scheme and let (P,V) be a NIZK for
L = {(c0, c1,pk0,pk1) : ∃(m, z0, z1) s.t. c0 = Epk0(m, z0) ∧ c1 = Epk1(m, z1)}

Construction 28 (Naor-Yung)

G′(1n):
1 For i ∈ {0,1}: set (ski ,pki)← G(1n).
2 Let r ← {0,1}`(n), and output pk ′ = (pk0,pk1, r) and

sk ′ = (pk ′, sk0, sk1)

E′pk ′(m):

1 For i ∈ {0,1}: set ci = Epki (m, zi), where zi is a uniformly chosen
string of the right length

2 π ← P((c0, c1,pk0,pk1), (m, z0, z1), r)
3 Output (c0, c1, π).

D′sk ′(c0, c1, π): If V((c0, c1,pk0,pk1), π, r) = 1, return Dsk0(c0).
Otherwise, return ⊥.
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Public-key CCA1, cont.

We assume for simplicity that the encryption key output by G(1n) is of
length at least n. (?)

` is an arbitrary polynomial, and determines the maximum message
length to encrypt using ”security parameter" n.

Is the scheme CCA1 secure?

Theorem 29

Assuming (P,V) is adaptive secure, then Construction 28 is a public-key
CCA1 secure encryption scheme.

Proof: Given an attacker A′ for the CCA1 security of (G′,E′,D′), we use it to
construct an attacker A on the CPA security of (G,E,D) or the adaptive
security of (P,V).
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Proving Thm 29

Let S = (S1,S2) be the (adaptive) simulator for (P,V,L)

Algorithm 30 (A)

Input: (1n,pk)

1 Let j ← {0,1}, pk1−j = pk , (pkj , skj)← G(1n) and (r , s)← S1(1n)

2 Emulate A′(1n,pk ′ = (pk0,pk1, r)):

On query (c0, c1, π) of A′ to D′:
If V((c0, c1,pk0,pk1), π, r) = 1, answer Dskj (cj).
Otherwise, answer ⊥.

3 Output the pair (m0,m1) that A′ outputs

4 On challenge c ( = Epk (mb)):

I Set c1−j = c, cj = Epkj (ma) for a← {0,1}, and
π ← S2((c0, c1,pk0,pk1), r , s)

I Send c′ = (c0, c1, π) to A′

5 Output the value that A′ does
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2 Emulate A′(1n,pk ′ = (pk0,pk1, r)):

On query (c0, c1, π) of A′ to D′:
If V((c0, c1,pk0,pk1), π, r) = 1, answer Dskj (cj).
Otherwise, answer ⊥.

3 Output the pair (m0,m1) that A′ outputs

4 On challenge c ( = Epk (mb)):

I Set c1−j = c, cj = Epkj (ma) for a← {0,1}, and
π ← S2((c0, c1,pk0,pk1), r , s)

I Send c′ = (c0, c1, π) to A′

5 Output the value that A′ does
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Proving Thm 29, cont.

Claim 31
Assume A′ breaks the CCA1 security of (G′,E′,D′) w.p. δ(n), then A breaks
the CPA security of (G,E,D) w.p. (δ(n)− neg(n))/2.

The adaptive soundness and adaptive zero-knowledge of (P,V), yields that
Pr[A′ “makes" A(1n) decrypt an invalid cipher] = neg(n) (2)

Assume for simplicity that the above prob is 0.
Hence, in the first the emulation of A′ is perfect and leaks no information
about j .

Let A′(1n, x , y) be A′’s output in the emulation induced by A(1n), conditioned
on a = x and b = y .

1 Since no information about j has leaked, A′(1n,0,1) ≡ A′(1n,1,0)

2 The adaptive zero-knowledge of (P,V) yields that
|Pr [A′(1n,1,1) = 1]− Pr [A′(1n,0,0) = 1]| ≥ δ(n)− neg(n)
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Proving Thm 29, cont..

Let A(x) be A’s output on challenge Epk (mx) (and security parameter 1n).

|Pr[A(1) = 1]− Pr[A(0) = 1]|

=

∣∣∣∣12 (Pr[A′(0,1) = 1] + Pr[A′(1,1) = 1])− 1
2
(Pr[A′(0,0) = 1] + Pr[A′(1,0) = 1])

∣∣∣∣
≥ 1

2
|Pr[A′(1,1) = 1]− Pr[A′(0,0) = 1]| − 1

2
|Pr[A′(1,0) = 1]− Pr[A′(0,1) = 1]|

≥ (δ(n)− neg(n))/2− 0
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Public-key CCA2

Is Construction 28 CCA2 secure?

Problem: Soundness might not hold with respect to the simulated CRS,
after seeing a proof for an invalid statement

Solution: use simulation sound NIZK
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