Foundation of Cryptography, Lecture 7 Commitment Schemes

Benny Applebaum & Iftach Haitner, Tel Aviv University

Tel Aviv University.

December 22, 2016

Section 1

Commitment Schemes

Commitment Schemes

Digital analogue of a safe.

Commitment Schemes

Digital analogue of a safe.

Definition 1 (Commitment scheme)

An efficient two-stage protocol (S, R).

Commit The sender S has private input $\sigma \in \{0, 1\}^*$ and the common input is 1^{*n*}. The commitment stage results in a joint output *c*, the commitment, and a private output *d* to S, the decommitment.

Reveal S sends the pair (d, σ) to R, and R either accepts or rejects.

Completeness: R always accepts in an honest execution.

Commitment Schemes

Digital analogue of a safe.

Definition 1 (Commitment scheme)

An efficient two-stage protocol (S, R).

Commit The sender S has private input $\sigma \in \{0, 1\}^*$ and the common input is 1^{*n*}. The commitment stage results in a joint output *c*, the commitment, and a private output *d* to S, the decommitment.

Reveal S sends the pair (d, σ) to R, and R either accepts or rejects.

Completeness: R always accepts in an honest execution.

Hiding: In commit stage: $\forall \text{ PPT } \mathbb{R}^*$, $m \in \mathbb{N}$ and $\sigma, \sigma' \in \{0, 1\}^m$, $\{\text{View}_{\mathbb{R}^*}(\mathbb{S}(\sigma), \mathbb{R}^*)(1^n)\}_{n \in \mathbb{N}} \approx_c \{\text{View}_{\mathbb{R}^*}(\mathbb{S}(\sigma'), \mathbb{R}^*)(1^n)\}_{n \in \mathbb{N}}$.

Binding: A cheating sender S^* succeeds in the following game with negligible probability in *n*:

On security parameter 1^{*n*}, S^{*} interacts with R in the commit stage resulting in a commitment c, and then output two pairs (d, σ) and (d', σ') with $\sigma \neq \sigma'$ such that $R(c, d, \sigma) = R(c, d', \sigma') = Accept$

wlg. we can think of d as the random coin of S, and c as the transcript

- wlg. we can think of d as the random coin of S, and c as the transcript
- Hiding: Perfect, statistical, computational

- wlg. we can think of d as the random coin of S, and c as the transcript
- Hiding: Perfect, statistical, computational
- Binding: Perfect, statistical. computational

- wlg. we can think of d as the random coin of S, and c as the transcript
- Hiding: Perfect, statistical, computational
- Binding: Perfect, statistical. computational
- Cannot achieve both properties to be statistical simultaneously.

- wlg. we can think of d as the random coin of S, and c as the transcript
- Hiding: Perfect, statistical, computational
- Binding: Perfect, statistical. computational
- Cannot achieve both properties to be statistical simultaneously.
- ► For computational security, we will assume non-uniform entities:

- wlg. we can think of d as the random coin of S, and c as the transcript
- Hiding: Perfect, statistical, computational
- Binding: Perfect, statistical. computational
- Cannot achieve both properties to be statistical simultaneously.
- For computational security, we will assume non-uniform entities:

On security parameter *n*, the adversary gets a poly-bounded auxiliary input z_n .

- wlg. we can think of d as the random coin of S, and c as the transcript
- Hiding: Perfect, statistical, computational
- Binding: Perfect, statistical. computational
- Cannot achieve both properties to be statistical simultaneously.
- For computational security, we will assume non-uniform entities: On security parameter *n*, the adversary gets a poly-bounded auxiliary input *z_n*.
- Suffices to construct "bit commitments"

- wlg. we can think of d as the random coin of S, and c as the transcript
- Hiding: Perfect, statistical, computational
- Binding: Perfect, statistical. computational
- Cannot achieve both properties to be statistical simultaneously.
- For computational security, we will assume non-uniform entities: On security parameter *n*, the adversary gets a poly-bounded auxiliary input *z_n*.
- Suffices to construct "bit commitments"
- (non-uniform) OWFs imply statistically binding, computationally hiding commitments, and also computationally binding, statistically hiding commitments

Perfectly Binding Commitment from OWP

Let $f: \{0, 1\}^n \mapsto \{0, 1\}^n$ be a permutation and let *b* be a (non-uniform) hardcore predicate for *f*.

Perfectly Binding Commitment from OWP

Let $f: \{0, 1\}^n \mapsto \{0, 1\}^n$ be a permutation and let *b* be a (non-uniform) hardcore predicate for *f*.

Protocol 2 ((S, R))

```
Commit:
S's input: \sigma \in \{0, 1\}
S chooses a random x \in \{0, 1\}^n, and sends c = (f(x), b(x) \oplus \sigma) to R
```

Reveal:

```
S sends (x, \sigma) to R, and R accepts iff (x, \sigma) is consistent with c (i.e., f(x) = c_1 and b(x) \oplus \sigma = c_2)
```

Protocol 2 is perfectly binding and computationally hiding commitment scheme.

Protocol 2 is perfectly binding and computationally hiding commitment scheme.

' Proof:

Protocol 2 is perfectly binding and computationally hiding commitment scheme.

' Proof: Correctness and binding are clear.

Protocol 2 is perfectly binding and computationally hiding commitment scheme.

[•] Proof: Correctness and binding are clear. **Hiding:** for any (possibly non-uniform) algorithm A, let

 $\Delta_n^{\mathsf{A}} = |\Pr[\mathsf{A}(f(U_n), b(U_n) \oplus 0) = 1] - \Pr[\mathsf{A}(f(U_n), b(U_n) \oplus 1) = 1]|$

Protocol 2 is perfectly binding and computationally hiding commitment scheme.

[•] Proof: Correctness and binding are clear. **Hiding:** for any (possibly non-uniform) algorithm A, let

 $\Delta_n^{\mathsf{A}} = |\Pr[\mathsf{A}(f(U_n), b(U_n) \oplus 0) = 1] - \Pr[\mathsf{A}(f(U_n), b(U_n) \oplus 1) = 1]|$

It follows that

 $|\Pr[A(f(U_n), b(U_n) \oplus 0) = 1] - \Pr[A(f(U_n), b(U_n) \oplus U) = 1]| = \Delta_n^A/2$

Protocol 2 is perfectly binding and computationally hiding commitment scheme.

[•] Proof: Correctness and binding are clear. **Hiding:** for any (possibly non-uniform) algorithm A, let

 $\Delta_n^{\mathsf{A}} = |\Pr[\mathsf{A}(f(U_n), b(U_n) \oplus 0) = 1] - \Pr[\mathsf{A}(f(U_n), b(U_n) \oplus 1) = 1]|$

It follows that

 $|\Pr[\mathsf{A}(f(U_n), b(U_n) \oplus 0) = 1] - \Pr[\mathsf{A}(f(U_n), b(U_n) \oplus U) = 1]| = \Delta_n^{\mathsf{A}}/2$

Hence,

 $|\Pr[A(f(U_n), b(U_n)) = 1] - \Pr[A(f(U_n), U) = 1]| = \Delta_n^A/2$ (1)

Protocol 2 is perfectly binding and computationally hiding commitment scheme.

[•] Proof: Correctness and binding are clear. **Hiding:** for any (possibly non-uniform) algorithm A, let

 $\Delta_n^{\mathsf{A}} = |\Pr[\mathsf{A}(f(U_n), b(U_n) \oplus 0) = 1] - \Pr[\mathsf{A}(f(U_n), b(U_n) \oplus 1) = 1]|$

It follows that

 $|\Pr[\mathsf{A}(f(U_n), b(U_n) \oplus 0) = 1] - \Pr[\mathsf{A}(f(U_n), b(U_n) \oplus U) = 1]| = \Delta_n^{\mathsf{A}}/2$

Hence,

 $|\Pr[A(f(U_n), b(U_n)) = 1] - \Pr[A(f(U_n), U) = 1]| = \Delta_n^A/2$ (1)

Thus, Δ_n^A is negligible for any PPT

Statistically Binding Commitment from OWF.

Let $g: \{0,1\}^n \mapsto \{0,1\}^{3n}$ be a (non-uniform) PRG

Statistically Binding Commitment from OWF.

Let $g: \{0,1\}^n \mapsto \{0,1\}^{3n}$ be a (non-uniform) PRG

Protocol 4 ((S,R))

Commit Common input: 1^n . S's input: $\sigma \in \{0, 1\}$.

1. R chooses a random $r \leftarrow \{0, 1\}^{3n}$ to S

2. S chooses a random $x \in \{0, 1\}^n$, and send g(x) to S in case $\sigma = 0$ and $c = g(x) \oplus r$ otherwise.

Reveal: S sends (σ, x) to R, and R accepts iff (σ, x) is consistent with *r* and *c*

Correctness is clear.

Statistically Binding Commitment from OWF.

Let $g: \{0,1\}^n \mapsto \{0,1\}^{3n}$ be a (non-uniform) PRG

Protocol 4 ((S,R))

Commit Common input: 1^n . S's input: $\sigma \in \{0, 1\}$.

1. R chooses a random $r \leftarrow \{0, 1\}^{3n}$ to S

2. S chooses a random $x \in \{0, 1\}^n$, and send g(x) to S in case $\sigma = 0$ and $c = g(x) \oplus r$ otherwise.

Reveal: S sends (σ, x) to R, and R accepts iff (σ, x) is consistent with r and c

Correctness is clear. Hiding and biding HW