Foundation of Cryptography, Lecture 7 Commitment Schemes

Benny Applebaum \& Iftach Haitner, Tel Aviv University

Tel Aviv University.

December 22, 2016

Section 1

Commitment Schemes

Commitment Schemes

Digital analogue of a safe.

Commitment Schemes

Digital analogue of a safe.

Definition 1 (Commitment scheme)

An efficient two-stage protocol (S, R).
Commit The sender S has private input $\sigma \in\{0,1\}^{*}$ and the common input is 1^{n}. The commitment stage results in a joint output c, the commitment, and a private output d to S, the decommitment.

Reveal S sends the pair (d, σ) to R , and R either accepts or rejects.
Completeness: R always accepts in an honest execution.

Commitment Schemes

Digital analogue of a safe.

Definition 1 (Commitment scheme)

An efficient two-stage protocol (S, R).
Commit The sender S has private input $\sigma \in\{0,1\}^{*}$ and the common input is 1^{n}. The commitment stage results in a joint output c, the commitment, and a private output d to S, the decommitment.

Reveal S sends the pair (d, σ) to R , and R either accepts or rejects.
Completeness: R always accepts in an honest execution.
Hiding:. In commit stage: $\forall \mathrm{PPT} \mathrm{R}^{*}, m \in \mathbb{N}$ and $\sigma, \sigma^{\prime} \in\{0,1\}^{m}$, $\left\{\operatorname{View}_{\mathbf{R}^{*}}\left(\mathrm{~S}(\sigma), \mathrm{R}^{*}\right)\left(1^{n}\right)\right\}_{n \in \mathbb{N}} \approx_{c}\left\{\operatorname{View}_{\mathrm{R}^{*}}\left(\mathrm{~S}\left(\sigma^{\prime}\right), \mathrm{R}^{*}\right)\left(1^{n}\right)\right\}_{n \in \mathbb{N}}$.

Commitment Schemes cont.

Binding: A cheating sender S* succeeds in the following game with negligible probability in n :

On security parameter 1^{n}, S^{*} interacts with R in the commit stage resulting in a commitment c, and then output two pairs (d, σ) and $\left(d^{\prime}, \sigma^{\prime}\right)$ with $\sigma \neq \sigma^{\prime}$ such that $\mathrm{R}(c, d, \sigma)=\mathrm{R}\left(c, d^{\prime}, \sigma^{\prime}\right)=$ Accept

Commitment Schemes cont.

- wlg. we can think of d as the random coin of S, and c as the transcript

Commitment Schemes cont.

- wig. we can think of d as the random coin of S , and c as the transcript
- Hiding: Perfect, statistical, computational

Commitment Schemes cont.

- wig. we can think of d as the random coin of S , and c as the transcript
- Hiding: Perfect, statistical, computational
- Binding: Perfect, statistical. computational

Commitment Schemes cont.

- wig. we can think of d as the random coin of S , and c as the transcript
- Hiding: Perfect, statistical, computational
- Binding: Perfect, statistical. computational
- Cannot achieve both properties to be statistical simultaneously.

Commitment Schemes cont.

- wig. we can think of d as the random coin of S , and c as the transcript
- Hiding: Perfect, statistical, computational
- Binding: Perfect, statistical. computational
- Cannot achieve both properties to be statistical simultaneously.
- For computational security, we will assume non-uniform entities:

Commitment Schemes cont.

- wig. we can think of d as the random coin of S , and c as the transcript
- Hiding: Perfect, statistical, computational
- Binding: Perfect, statistical. computational
- Cannot achieve both properties to be statistical simultaneously.
- For computational security, we will assume non-uniform entities:

On security parameter n, the adversary gets a poly-bounded auxiliary input z_{n}.

Commitment Schemes cont.

- wig. we can think of d as the random coin of S , and c as the transcript
- Hiding: Perfect, statistical, computational
- Binding: Perfect, statistical. computational
- Cannot achieve both properties to be statistical simultaneously.
- For computational security, we will assume non-uniform entities:

On security parameter n, the adversary gets a poly-bounded auxiliary input z_{n}.

- Suffices to construct "bit commitments"

Commitment Schemes cont.

- wlg. we can think of d as the random coin of S , and c as the transcript
- Hiding: Perfect, statistical, computational
- Binding: Perfect, statistical. computational
- Cannot achieve both properties to be statistical simultaneously.
- For computational security, we will assume non-uniform entities:

On security parameter n, the adversary gets a poly-bounded auxiliary input z_{n}.

- Suffices to construct "bit commitments"
- (non-uniform) OWFs imply statistically binding, computationally hiding commitments, and also computationally binding, statistically hiding commitments

Perfectly Binding Commitment from OWP

Let $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ be a permutation and let b be a (non-uniform) hardcore predicate for f.

Perfectly Binding Commitment from OWP

Let $f:\{0,1\}^{n} \mapsto\{0,1\}^{n}$ be a permutation and let b be a (non-uniform) hardcore predicate for f.

Protocol $2((S, R))$

Commit:
S's input: $\sigma \in\{0,1\}$
S chooses a random $x \in\{0,1\}^{n}$, and sends $c=(f(x), b(x) \oplus \sigma)$ to R

Reveal:

S sends (x, σ) to R , and R accepts iff (x, σ) is consistent with c (i.e., $f(x)=c_{1}$ and $b(x) \oplus \sigma=c_{2}$)

Claim 3

Protocol 2 is perfectly binding and computationally hiding commitment scheme.

Claim 3

Protocol 2 is perfectly binding and computationally hiding commitment scheme.

' Proof:

Claim 3

Protocol 2 is perfectly binding and computationally hiding commitment scheme.
' Proof: Correctness and binding are clear.

Claim 3

Protocol 2 is perfectly binding and computationally hiding commitment scheme.
' Proof: Correctness and binding are clear. Hiding: for any (possibly non-uniform) algorithm A, let

$$
\Delta_{n}^{\mathrm{A}}=\left|\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right), b\left(U_{n}\right) \oplus 0\right)=1\right]-\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right), b\left(U_{n}\right) \oplus 1\right)=1\right]\right|
$$

Claim 3

Protocol 2 is perfectly binding and computationally hiding commitment scheme.
' Proof: Correctness and binding are clear. Hiding: for any (possibly non-uniform) algorithm A, let

$$
\Delta_{n}^{\mathrm{A}}=\left|\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right), b\left(U_{n}\right) \oplus 0\right)=1\right]-\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right), b\left(U_{n}\right) \oplus 1\right)=1\right]\right|
$$

It follows that

$$
\left|\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right), b\left(U_{n}\right) \oplus 0\right)=1\right]-\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right), b\left(U_{n}\right) \oplus U\right)=1\right]\right|=\Delta_{n}^{\mathrm{A}} / 2
$$

Claim 3

Protocol 2 is perfectly binding and computationally hiding commitment scheme.
' Proof: Correctness and binding are clear.
Hiding: for any (possibly non-uniform) algorithm A, let

$$
\Delta_{n}^{\mathrm{A}}=\left|\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right), b\left(U_{n}\right) \oplus 0\right)=1\right]-\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right), b\left(U_{n}\right) \oplus 1\right)=1\right]\right|
$$

It follows that

$$
\left|\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right), b\left(U_{n}\right) \oplus 0\right)=1\right]-\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right), b\left(U_{n}\right) \oplus U\right)=1\right]\right|=\Delta_{n}^{\mathrm{A}} / 2
$$

Hence,

$$
\begin{equation*}
\left|\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right), b\left(U_{n}\right)\right)=1\right]-\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right), U\right)=1\right]\right|=\Delta_{n}^{\mathrm{A}} / 2 \tag{1}
\end{equation*}
$$

Claim 3

Protocol 2 is perfectly binding and computationally hiding commitment scheme.
' Proof: Correctness and binding are clear.
Hiding: for any (possibly non-uniform) algorithm A, let

$$
\Delta_{n}^{\mathrm{A}}=\left|\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right), b\left(U_{n}\right) \oplus 0\right)=1\right]-\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right), b\left(U_{n}\right) \oplus 1\right)=1\right]\right|
$$

It follows that

$$
\left|\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right), b\left(U_{n}\right) \oplus 0\right)=1\right]-\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right), b\left(U_{n}\right) \oplus U\right)=1\right]\right|=\Delta_{n}^{\mathrm{A}} / 2
$$

Hence,

$$
\begin{equation*}
\left|\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right), b\left(U_{n}\right)\right)=1\right]-\operatorname{Pr}\left[\mathrm{A}\left(f\left(U_{n}\right), U\right)=1\right]\right|=\Delta_{n}^{\mathrm{A}} / 2 \tag{1}
\end{equation*}
$$

Thus, Δ_{n}^{A} is negligible for any PPT

Statistically Binding Commitment from OWF.

Let $g:\{0,1\}^{n} \mapsto\{0,1\}^{3 n}$ be a (non-uniform) PRG

Statistically Binding Commitment from OWF.

Let $g:\{0,1\}^{n} \mapsto\{0,1\}^{3 n}$ be a (non-uniform) PRG

Protocol 4 ((S, R))

Commit Common input: 1^{n}.
S's input: $\sigma \in\{0,1\}$.

1. R chooses a random $r \leftarrow\{0,1\}^{3 n}$ to S
2. S chooses a random $x \in\{0,1\}^{n}$, and send $g(x)$ to S in case $\sigma=0$ and $c=g(x) \oplus r$ otherwise.

Reveal: S sends (σ, x) to R , and R accepts iff (σ, x) is consistent with r and c
Correctness is clear.

Statistically Binding Commitment from OWF.

Let $g:\{0,1\}^{n} \mapsto\{0,1\}^{3 n}$ be a (non-uniform) PRG

Protocol 4 ((S, R))

Commit Common input: 1^{n}.
S's input: $\sigma \in\{0,1\}$.

1. R chooses a random $r \leftarrow\{0,1\}^{3 n}$ to S
2. S chooses a random $x \in\{0,1\}^{n}$, and send $g(x)$ to S in case $\sigma=0$ and $c=g(x) \oplus r$ otherwise.

Reveal: S sends (σ, x) to R , and R accepts iff (σ, x) is consistent with r and c
Correctness is clear. Hiding and biding HW

