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Abstract

The problem of pattern matching with rotation is that of finding all occurrences of a two-
dimensional pattern in a text, in all possible rotations. We prove an upper and lower bound
on the number of such different possible rotated patterns. Subsequently, given an m x m array
(pattern) and an n x n array (text) over some finite alphabet ¥, we present a new method
yielding an O(n?m?) time algorithm for this problem.
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1 Introduction

One of the main motivation for research in two-dimensional pattern matching is the problem of
searching aerial photographs. The problem is a basic one in computer vision, but it was felt that
pattern matching can not be of any use in its solution. Such feelings were based on the belief
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that pattern matching algorithms are only good for ezact matching whereas in reality one seldom
expects to find an exact match of the pattern. Rather, it is interesting to find all text locations that
“approximately” match the pattern. The types of differences that make up these “approximations”
are:

1. Local Errors - introduced by differences in the digitization process, noise, and occlusion (the
pattern partly obscured by another object).

2. Scale - size difference between the image in the pattern and the text.

3. Rotation - The pattern image appearing in the text in a different angle.

Several of these approximation types have been handled in the past [2, 4, 5, 7, 14, 17].

The problem of pattern matching with rotation is that of finding all occurrences of a two-dimensional
pattern in a text, in all possible rotations. There was no known efficient solution for this problem,
even though many researchers were thinking about it for over a decade. Part of the difficulty lay
in the lack of a rigorous definition to capture the concept of rotation for a discrete pattern.

The first breakthrough came quite recently. Fredriksson and Ukkonen [11] gave an excellent com-
binatorial definition of rotation. They resorted to a geometric interpretation of text and pattern
and provided the following definition.

Let P be a two-dimensional m X m array and T be a two-dimensional n X n array over some finite
alphabet ¥. The array of unit pizels for T consists of n? unit squares, called pizels in the real
plane R%. The corners of the pixel T[i, ] are (i — 1,5 — 1), (i,5 — 1), (i — 1,7), and (4,5). Hence
the pixels of T form a regular n X n array covering the area between (0,0), (n,0), (0,n), and (n,n).
The center of each pixel is the geometric center point of its square location. Each pixel T[i, ] is
identified with the value from X that the original text had in that position. We say that the pixel
has a color from X. See Figure 1 for an example of the grid and pixel centers of a 7 x 7 text.

The array of pixels for pattern P is defined similarly. A different treatment is necessary for patterns
with odd sizes and for patterns with even sizes. For simplicity’s sake we assume throughout the
rest of this paper that the pattern is of size m x m and m is even. The rotation pivot of the pattern
is its exact center, the point (%, %) € R?. See Figure 2 for an example of the rotation pivot of a

4 x 4 pattern P.

Consider now a rigid motion (translation and rotation) that moves P on top of T. Consider the
special case where the translation moves the grid of P precisely on top of the grid of T', such that
the grid lines coincide.

Assume that the rotation pivot of P is at location (i,5) on the text grid. The pattern is now
rotated, centered at (i,7), creating an angle « between the z-axes of T' and P. P is said to be
at location ((i,7),a) over T. Pattern P is said to have an occurrence at location ((7,7),«) if the
center of each pixel in P has the same color as the pixel of T under it. See Figure 3 for an example
of 4 x 4 pattern P at location ((3,4),45°) on top of 8 x 8 text T

Fredriksson and Ukkonen [11] give a rotation invariant filter for two-dimensional matching. Their
algorithm performs well in reality. Combinatorially, though, their algorithm has a worst case time
complexity of O(n?m?®).
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Figure 2: The rotation pivot of a 4 x 4 pattern P.



Figure 3: 4 x 4 pattern P at location ((3,4),45°) over 8 x 8 text T



In a subsequent paper, Fredriksson, Navarro and Ukkonen [9] discuss an index for two-dimensional
matching involving rotation. They give an indexing scheme for the rotated search problem. Their
scheme allows a rotated search in expected time O(n?m3), but the worst case is O(n?m?).

Further improvements were done recently by the same authors [10]. They give fast filtering al-
gorithms for seeking a 2-dimensional pattern in a 2-dimensional text allowing any rotation of the
pattern. They consider the cases of exact and approximate matching, improving the previous
results.

Fredriksson, Navarro and Ukkonen [9] give two possible definitions for rotation. One is as described
above and the second is, in some way, the opposite. P is placed under the text T'. More precisely,
assume that the rotation pivot of P is under location (i,7) on the text grid. The pattern is now
rotated, centered at (i,7), creating an angle « between the z-axes of T and P. P is said to be
at location ((i,7), @) under T. Pattern P is said to have an occurrence at location ((i,7), ) if the
center of each pixel in T' has the same color as the pixel of P under it.

While the two definitions of rotation, “over” and “under”, seem to be quite similar, they are not
identical. For example, there exist angles for which two pattern pixel centers may find themselves
in the same text pixel. Alternately, there are angles where a text pixel does not have in it a center
of a pattern pixel, but all text pixels around it have centers of pattern pixels. In the “pattern under
text” model the center of the text pixel is the indicator of the rotated pattern, thus it is impossible
to have a rotated pattern with “don’t cares” surrounded by symbols, whereas in the “pattern over
text” model, this situation may happen. Figure 4 shows an example where text location [3, 5] does
not have any pattern pixel center in it, but [2, 5] and [3, 6] have pattern pixel centers. On the other
hand, if the text pixel center is the one to decide the color of the pixel, then all contiguous text
pixels that have pattern area under them define a rotated pattern.

Although all our results apply to both definitions of rotation, to avoid confusion our paper will
henceforth deal only with the rotation of pattern over the text.

This paper considers the worst-case behavior of the rotation problem. We propose a simple strategy
of searching for all different patterns that represent possible rotations. To this end, we prove an
upper and lower bound on the number of such different possible rotated patterns. Subsequently, by
using appropriate data structures, we were able to develop a new deterministic algorithms whose
worst-case complexity is O(n?m?). The time complexity is similar to an algorithm that can be
derived from [12]. We present these both algorithms since we believe that the problem can be
solved more efficiently. Some of the methods we present may prove fruitful in further improving
the solution for this problem.

The rotation problem is an interesting one since it brings together two research areas that deal with
similar problems by using different means — pattern matching and computational geometry. Recent
geometry papers have made use of pattern matching techniques to solve geometric problems see
e.g. [18, 16]). We believe this is the first pattern matching paper that makes heavy use of geometry
to solve pattern matching problems. A related problem considering similarity between images is
considered in [6].

This paper is organized as follows. In Section 3 we give a tight bound on the number of different pat-
terns that represent all possible rotations of a given pattern. This leads to a simple O(n?m?logm)
algorithm for the rotated matching problem.



Figure 4: Text pixel T'[3,5] has no pattern pixel over it.



In the following sections we present two different ways of improving the time to O(n?m3). Finally,
we conclude with ideas for further improvements.

2 The Dictionary-Matching Solution

An immediate natural idea for solving the rotation problem is to use dictionary matching solutions.
That is, construct a dictionary of all possible rotations of the pattern and then search for them in
the text.

We slightly modify the definition given in [11] for rotated occurrences of P in T.

Definition 1 Let P be an m xm pattern with m even. Place P on the real plane R? in the following
manner:

1. The rotation pivot coincides with the origin (0,0).

2. Fwery pattern element corresponds to a 2 X 2 square.

—-m <

The segments x = 21, i = —",...,0, ..., , <

y < m are the pattern grid.

m
2

, —m<z<mandy=2j, j=-75,..,0,..,

m
2

The 2 x 2 squares whose corners, clockwise from the top left, namely (2i,27), (23,2(5 + 1)), (2(¢ +
1),2(5 + 1)) and (2(i +1),25), 4,5 =—5,...,0,..., % — 1, are the pattern grid cells.

The points (2i + 1,25 +1), 4,5 =—15,...,0,..., % — 1 are the pattern pixel centers.

The color of pattern pizel centered at (20 + 1,25 + 1) is Pli + 3 + 1,5 + 3 +1].

Example: The pattern in Figure 5 is of size 8 x 8. The pattern grid is the dotted (even valued)
lines. The pattern pixel centers are the intersection of the solid (odd valued) lines.

Definition 2 Let P¢ be the lattice whose points are the pattern pizel centers. The color of lattice
point p is the color of the pattern pizel center that coincides with p. Let PS be the lattice P¢ rotated
around the origin by angle o. If there is a pattern grid cell with two lattice points of PS in it, then
we say that there is no legal rotated pattern for angle a. Otherwise, color each pattern grid cell by
the color of the (unique) lattice point PS that is in that grid cell, if such ezists, and by ¢ if there
18 no such lattice point. ¢ is the don’t care or wildcard symbol that matches every character in the
alphabet.

Consider the smallest square centered at (0,0) that includes all non-¢ colored pizels, and construct
a matriz of the pizel colors of that square. This matriz is the pattern P rotated by angle «.

While there exist efficient two-dimensional dictionary-matching algorithms (e.g. [3, 13]), none of
them works with don’t cares. The only known algorithm for efficiently solving string matching
with don’t cares is the Fischer-Paterson algorithm [8]. The Fischer-Paterson algorithm finds all
occurrences of a string of length m in a string of length n, both possibly having occurrences of



the don’t care symbol, in time O(n log? m). Unfortunately, this method does not generalize to
dictionary matching.

Therefore, an immediate suggestion for a rotation algorithm is the following.
Preprocessing: Construct a data base of all possible pattern rotations P, i =1,.... k.
Text scanning: Let T be the input text (an n x n array).
For every pattern rotation F; in the data base do:
Find all occurrences of P; in T
Time: The algorithm’s running time is O(kn?logm). In the next section we prove that the number
of different pattern rotations k is ©(m?). Thus the running time of the above algorithm becomes
O(n?*m3logm).

3 The Number of Different Rotations

Let pattern P = P[l..m,1..m] be a two-dimensional m x m array and let text T'= T[l..n,1..n] be
an n x n array over some finite alphabet 3. We assume that m < n.

We want to prove that the upper and lower bounds on the number of legal pattern rotations is
O(m?).

It is clear that the upper bound is O(m?) since we have m? different points in the pattern, each
creates no more than m different angles (whenever its orbit crosses an odd coordinate).

It suffices to prove that the order of the different rotations is Q(m?), and that will establish a tight
bound of ©(m?).

We will restrict ourselves to points (z,y) in the first quadrant (z,y > 0) whose coordinates z and
y are relatively prime, or co-prime, i.e., the greatest common divisor of z and y is 1. We prove

that the number of different rotations of just the first quadrant points with coprime coordinates is
Q(m3).

Theorem 1 There are (m?) different rotations of an m x m pattern.

Proof: We will show that, for every two different first quadrant points X; and X5 having coprime
coordinates, it is impossible that they cross a grid line at the same angle. The cardinality of the set
{(no,mp) | 1 < ng,mg < m, and ng, mg are coprime} is: 67%2 +o(mlogm). This is a direct corollary
of [theorem 330, [15]]. Since there are ©(m?) such points and 2(m?) of them, when rotated, cross
the grid Q(m) times, there are Q(m?) different rotations.

Assume, then, that X; and X5 each have coprime integer coordinates. Assume also that if X; =
(c,s) then X9 # (s,c). This second assumption reduces the number of pairs under consideration by
a half, but it is still ©(m?). Rotation moves X to Y; and X5 to Y3. Assume that both Y; and Y5
just crossed a horizontal text grid line. This means that both Y7, Y5 have coordinates of which one
is an even integer and one is of the form m, where n is odd. The reason for this is the following.

Let X; = (¢, 8), and Y7 = (¢, s’). Note that ¢, s are odd integers and therefore can be denoted
by ¢ = 2ky + 1,8 = 2ko + 1. s’ is even so it can be denoted by s’ = 2l;. Using Pythagoras
Theorem we get ¢ = (2k1 + 1)% + (2ko + 1)? — 41,2 = 4k® + 4k + 1 + 4ko® + dky + 1 — 41,2 =



-8-7-6-5-4-3-2-10 1 2 3 4 5 6 7 8

Figure 5: Points X7 and X5 each have coprime integer coordinates. Orbits of them under rotation
around point O cross an horizontal line at points Y7 and Y3 respectively. Then, £ X10X, # £Y,0Y5
by Claim 1.



4(ky% + ky 4 ko 4+ ko — 1) 4+ 2. Therefore, ¢ is even. It can be denoted by ¢ = 2I,. Substituting ¢
with 20y we get: 4(ki12+ ki + ko? + ko — 1) +2 = 2l5. Therefore, 2(k1? + k1 + ko2 4+ ky —11) +1 = Iy.

Claim 1 KX10Y1 75 KXQOYQ

proof: It suffices to show that £ X10X5 # £Y10Y5. Consider the three possibilities:

e case 1: Both Y7, Y5 have a horizontal coordinate as an even integer coordinate.

Denote,
X1 = (c1,51)
Xo = (c2,52)
Yy = (c1.81)
Yy = (ch, 55)

then, by the formula sin(a — ) = sin @ cos 8 — cos asin 3, we get

. S1€2 — 82C1
sin£X10Xyg = ——
172
! ] ! ]
. shch, — she
sinAY;0Y, = 21227271

r17r2
where, 71 = \/c? + 5%, 79 = \/c3 + s5.
Assume sin £ X;0X5 = sin £Y10Y5
then, sjco — sec1 = s, — shc) where, s), s}, € 27,

i = 11v2mq, & = lay/2mgy s.t. my,mg are odd and square free (i.e. they do not have a
square factor).

d = sy — she) € Z[v2ma, v/2mo

Now, either m{ = mo or not. In both cases we will reach a contradiction.

— If mq # ms then d’' € Z since, \/2m1, v/2ms have non zero coefficients and are linearly
independent. This contradicts the fact that d’ € Z since d' = s1co — sacy.

— If m1 = mg then d’ € Z iff d = 0. In that case either X; and X5 are the same point,
or ¢ = s9 and s = cg, or one of them does not have coprime coordinates. Both latter
cases contradict the assumption.

e case 2: Both Y7, Y5 have an even vertical coordinate: exchange s; with c;.

e case 3: One has an even vertical coordinate and one has an even horizontal coordinate: replace
cos with sin.

This ends the proof. O
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4 Getting Rid of the log Factor

We provide a new method, called “Invalid-interval” for solving the problem of pattern matching with
rotation in time O(n?m?). This improves on the immediate O(n?m3logm) solution of Section 2.
The aim is to present a new methodological approach, because the resulting complexity is the same
as the method of the next section that can be derived easily from [12]. For the sake of completeness
the latter is presented first.

4.1 Updating Changes Method

We have established in Section 3 that there are ©(m?) different discrete patterns that represent all
possible rotations. We consider the situation now from a different point of view. Suppose P is at
location ((7,7),«). As we rotate P, the center of its pixels moves from one text pixel to another.
We are interested in quantifying this shift through text pixels.

Definition: Let P be at location ((i,7), «). The changes resulting from rotation e are the pattern
pixel centers that go through (above) more than one different text pixel during rotation e. The
number of changes resulting from rotation € is the sum of the number of different text pixels that
each change traversed during rotation e.

Claim 2 Let P be at location ((i,7),0). The number of changes resulting from a 27 radian rotation
is O(m3).

Proof: During a complete 27 radian rotation, the center of every pattern pixel moves through at

most O(m) text pixels. Since there are m? pattern elements then the total number of changes is
O(m?). O

Our idea is to create, for a given m, a list of angles that produce changes, together with all the
changes each such angle produces. Specifically, for every angle, we want to store all pixels that
move from a text pixel to another text pixel and keep track of these pixels. Note that this list is

identical for all m x m patterns over all alphabets. Claim 2 guarantees that the size of this list is
O(m3).

Our algorithm’s pattern preprocessing is then:

Preprocessing
For every pattern pixel center do:

Generate the formula of the circle created by that center during a 27 rotation (its orbit).

Mark all angles and changes — the intersection of the circle with the text grid.
endFor

Merge the angles in the m? lists, to form a list of changes increasing by rotation angle.

end Preprocessing

Note that the above is a structural preprocessing. Unlike most pattern preprocessing in the pattern
matching literature, our preprocessing does not use any information on the pattern symbols. The
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only information needed is the pattern dimension. This type of structural preprocessing is used in
the algorithm of Subsection 4.2 as well.

Implementation Remarks: The angle precision is given by the problem definition. The pre-
processing can accommodate any precision that is at least logm bits since the exact angle is not
necessary for the preprocessing. The only necessary information is differentiating between different
angles. For this, a precision of logm bits is sufficient since there are O(m?) different angles.

Time for Preprocessing: The preprocessing running time can be made O(m3).

The text scanning involves two operations. The first is finding the number of mismatches that the
original, unrotated pattern has at every text location. The second step is, for every text location,
updating the number of mismatches as it changes for every one of the O(m?) relevant rotation
angles. Every text location and every angle where the number of mismatches is 0, corresponds to
a rotated match.

Text Scanning
Compute the number of mismatches of P (unrotated) at every text location.
For every text pixel do:

For every angle in the precomputed list of changes do:

Update the number of mismatches reflected by this angle’s change.
Report a match if the number of mismatches is 0.

endFor

endFor

end Text Scanning

Implementation Remarks: The preprocessing assures us that every angle has a list of pattern
pixel centers that changed a text pixel at that angle. Comparing the symbol in the pattern pixel
with the symbols of the past and present text pixels allows us to compute whether the number
of mismatches remains the same (in case the pattern symbol either matches both text symbols
or mismatches both text symbols), increases by one (if the pattern symbol matches the old text
symbol but mismatches the new one) or decreases by one (if the pattern symbol mismatches the
old text symbol but matches the new one).

Time for Text Scanning: The initial mismatch count of P in T can be done in time O(n?m+/logm)
using Abrahamson’s algorithm [1]. Each ensuing mismatch update takes constant time per change
in the list. Since the list has length O(m?) by Claim 2, and since the entire list is scanned for every
text location, the total algorithm time is O(n?m?).

4.2 Invalid-Intervals Method

Definition: The relevant text pizels for P at location ((i,7), «) are all text pixels that are under at
least one pattern pixel center. The relevant text pizels for P at text location (i,j) are all relevant
text pixels for P at location ((4,j), «), for all a € [0, 27).

Let P be centered at some fixed text location (i,7), and let ((zp,yp), (x7,yr)) be a pair where
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(zp,yp) is a pattern location and (z7,yr) is a relevant text pixel of P at location (7, j). The angle
interval of pair ((xp,yp), (z7r,yr)) is the interval [, 5],0 < a < f < 27, where « is the smallest
angle for which the center of pattern pixel (zp,yp) is on text pixel (z7,yr) at location ((7,7), a),
and [ is the largest angle for which the center of pattern pixel (zp,yp) is on text pixel (z7,yr) at

location ((7,7), ).

Claim 3 Let P be centered at some fized text location (i, 5). There are O(m?) pairs ((zp,yp), (z1,yT)),
where (xp,yp) is a pattern location and (xp,yr) is a relevant text pizel of P at location (i,7), that
have non-empty angle intervals.

Proof: For a fixed text location there are O(m?) relevant text pixels. Therefore the total number
of pairs is O(m*). However, some pattern elements cannot match some text pixels in a rotation
centered at fixed text location (7,7). As noted in the proof of Claim 2, every pattern pixel center
goes through O(m) text pixels in a full 27 radians rotation. Since there are m? different pattern
pixels, this means that the number of pairs that generate non-empty angle intervals is O(m3). O

The preprocessing in the invalid-intervals method is also structural. Fix a text location, as the
center of rotations. Compute the angle interval for each one of the O(m?) pairs. In the text
scanning phase, for every text location as center, we are guaranteed that every interval where the
pattern symbol does not equal the text symbol in its pair, cannot have a match. Any angle not
covered by an invalid interval is an angle where there is a rotated match.

Our algorithm’s pattern preprocessing is then:

Preprocessing
For every pattern pixel center do:

Generate the formula of the circle created by that center during a 27 rotation.

For every text pixel intersecting the circle, mark the angle interval.

endFor

end Preprocessing

Implementation Remarks: As remarked for the preprocessing of Subsection 4.1, the prepro-
cessing can accommodate any angle precision that is at least logm bits. In fact, we designate the
angles by {1,...,2m3} (with an attached conversion table of appropriate precision).

Time for Preprocessing: The preprocessing running time can be made O(m?).

The text scanning involves ascertaining which are the invalid angle intervals and computing the
union of these intervals. Any remaining angle is a rotated match. The invalid intervals are declared
via a brute-force check. The union is computed by sorting and merging the intervals.
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Text Scanning

For every text pixel do:

For every pair ((zp,yp), (v1,yr)) do:

If Plxp,yp] # T[zT,yr] then mark the interval [«, 5] of pair {(xp,yp), (z1,yT))
as invalid.

endFor

Bucket Sort the invalid intervals by starting angle.

Merge overlapping intervals into a single larger interval.

If the interval [0, 27] is achieved, then there is no rotated match at text pixel. Otherwise,
all angles outside the merged intervals are rotated matches.

endFor

end Text Scanning

Implementation Remarks: Recall that our angles are denoted by numbers in {1, ...,2m?3}, thus
bucket sort is appropriate in the above algorithm.

Time for Text Scanning: For each of the n? text pixels the algorithm makes O(m?) comparisons.
Bucket sorting the resulting O(m?) invalid intervals is done in time O(m?), and merging is done in
linear time, for a total of O(m?) per text pixel. The total algorithm time is, therefore, O(n?m3).

5 Future Work

We proved an upper and lower bound on the number of such different possible rotated patterns,
and we have presented a new strategy to search for rotated two-dimensional patterns in arrays.
The time complexity of our algorithms is not entirely satisfactory and seems to leave room for
further improvements. Our opinion is based on the fact that each position in the text array
is examined independently of other positions. We have been unable to take into account the
information collected at one position to accelerate the test at next positions, as it is classical in
most pattern matching methods. However, we believe that this is possible.
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