An Extension of the Vector Space Model for
Querying XML Documentsvia XML Fragments

David Carmel*, Nadav Efraty**, Gad M. Landau**, Yoelle S. Maarek*, Yos Mass*
*IBM Research Lab in Haifa
Haifa 31905, ISRAEL
** Computer Science Dept
Haifa University, Haifa, ISRAEL

Abstract

To date, most of the work on XML query and search has stemmed from the document
management and database communities and from the information needs of business applications,
as evidenced by existing XML query languages such as W3C's XQuery, which is strongly
inspired by SQL. We propose here to extend the realm of XML by supporting the information
needs of users wishing to query XML collections in a flexible way without knowing much about
the documents structure. Rather than inventing anew query language, we suggest to query XML
documents via pieces of XML documents or “XML fragments” of the same nature as the
documents that are queried. We then present an extension of the vector space model for
searching XML collections and ranking search results by relevance.

1 Motivation

XML (the eXtensible Markup Language) [1] can be used not only for exchanging data in business-
to-business applications, but also for representing any kind of free-text documents, especialy
narrative documents such as articles, business reports, and naturally Web pages. Most of the current
XML query languages, e.g., XQuery [2], and systems that embody them, are geared towards
structure and data, and typically expect “binary answers’ to very specific queries. While thisis
appropriate for XML documents that data exchange between applications, thisis less so for
discovering of narrative documents. As observed by [3], an overwhelming mgjority of the required
features in the W3C proposal for an XML Query Languages are “data-centric”, and only oneis
“document-centric”, i.e., dedicated to processing smple text conditions.

The need for document centric approaches has aready been identified in the IR community, [4].
More recently the XQuery working group has been conducting debates in order to investigate how to
add full-text search features and more particularly ranking capabilities in XQuery. In paralld, a
variety of systems that support a document-centric approach have been proposed, [3,5]. While all of
these efforts represent a significant step in this direction, they still focus on giving control to
applications as well as users. We discuss below a simplified approach for concentrating exclusively
on the information needs of users rather than the very specific control and management needs of
developers or applications.

2 Approach Overview

Let us consider the following example derived' from [6] where a user wants to find all sections
whose title refersto "XML", in the document below.

! The original “Q9 example” in [6] consists of “finding all section or chapter titles that contain the word XML,
regardless of thelevel of nesting”. Our task hereis slightly different as we are not looking for occurrences of

<chapt er >
<title>XM. Data Model </title>
<secti on>
<title>Syntax For Data Model </title>
</ section>
</ chapt er >
<chapt er >
<secti on>
<title>XM.</title>
<secti on>
<title>Basic Syntax</title>
</ section>
</ section>
</ chapt er >
<chapt er >
<secti on>
<title>XM. and Sem structured Data</title>
</ section>
</ chapt er >

Figurel: XML Document Example

In XQuery she would express a query of the form:

<resul ts>

{
for $t in document ("books.xm ")//section/title
where contains($t/text(), "XWM")
return $t

</resul ts>

Figure2: XQuery Example

Even if the XQuery syntax could be made less “cryptic”, the user would still need to know about
elements like section and title. Worse, assume that there is no section but a chapter with a relevant
title, the user would need to reformulate his query, replacing the string //section/title with
//chapter/title. It would be possible to specify ahead of time that both elements qualify? by using the
“union” operator. However, both chapter and section matches would be considered equally, even if
one might be interested in chapters only if no relevant sections are found. More generaly, the user
would need to specify exhaustively the name of all alternate elements that would be “close enough”.
Note that it might be possible to automate this process by using the extension mechanism in XPath,
but this would require ad-hoc programming, while we would much prefer here a generic process.

We suggest here amore user-friendly approach where users can express queries from the simplest
possible way (freetext) to more complex structural constraints depending on their knowledge of the
DTD. They should get not only perfect matches but aso “close enough” ones ranked accordng to a
certain measure of relevance. One key contribution of thiswork is to avoid defining yet another
complex XML query language but rather to allow users to express their needs as fragments of XML

the element title, but for document units (in our case sections), hence we changed Q9 as well asthe
corresponding searched data.

2 Thisisactually the original Q9 examplein [6] where the “for” statement of our example reads: “for $t in
document("books.xml")//chapter/title union document("books.xml")//section/title”

documents, or XML fragments for short. Users should not need to reformulate their queriesin case
they become too specific. The ranking mechanism should be responsible for giving priority to the
closest form. This approach of using a very smple “fragment-based” language rather than XQuery is
somehow analogous to using free-text rather than Boolean queriesin IR: less control is given to the
user, and most of thelogic is put in the ranking mechanism so as to best match the user’ s needs.

We explain below how we propose to extend the vector space model so asto be able to compare
XML fragments and XML documents as objects of the same nature. We then explain how we have
embodied our model in aregular IR system, and briefly describe the basic principles our ranking
mechanism that is key to our entire approach. Note that we do not provide areal formal evaluation
yet, as evaluation experiments will be conducted in the context of INEX (Initiative for the evaluation
of XML Retrieval) effort [7] later thisyear.

3 Extendingthevector space mode

Let us remind here that in the regular vector space model, documents and queries are indexed in a
similar manner, so as to produce vectors in a space whose dimensions represent each a distinct
indexing unit® t,. The coordinate of a given document D on dimension t;, is noted wo (t) and stands

for the “weight” of t; in document D within a given collection. It is typically computed using a score
of the tf x idf family that takes into account both document and collection statistics. The relevance of
the document D to the query Q, noted below 1 (Q, D), isthen usually evaluated by using a measure

of similarity between vectors such as the cosine measure, where:

a. . wolt)* wo(t)
r (Q, D) - til QND _
[(o]

We propose here to use as indexing units not single terms* but pairs of the form (t;,c;), where terms
are qualified by the context in which they appear. In order to identify this context of appearance, we
borrow from the XPath model of XML documents — where each document is represented by atree of
nodes — its use of a path notation for navigating through the hierarchical structure of the document.

Thus, in Figure 1, the first occurrence of “XML” will be associated with the path “/Chapter/Title’ as
its context. We suggest then changing the similarity measure accordingly. Thus, in (1) the weight of
individua terms should be replaced by aweight in context that we note wo (ti, i) . In addition, we
propose to relax the scalar product model by accounting not only for exact “term in context”
matching (orthogonal dimensions) but also for context resemblance. In other words, we suggest to
increase the relevance score not only when asame (t;,¢) isfound in the query and the document,

but also when asame t; appears in different but somehow related contexts ¢; and . Thus, if we note
cr (context resemblance), the measure of resemblance between contexts, we propose to use as
measure of similarity between XML fragments and XML documents:

3 For the sake of the simplicity, we assume here that the basic indexing unit is asingle term, but the approach
applies also in the case of multi-word or phrase units.

4 A desired property of the weightsisthat contexts can be unified so that w(ti, cj+ck) = w(ti, ¢j) + w(ti, ck)

o

r (Q,D) = a (ti,ci)iQa (ti. k)T DWQ(ti,Ci)* Wb (ti, &) * cr (G, &)

4[]

We impose that cr values range between 0 and 1, where 1 is achieved only for a pair of perfectly
identical contexts. Thus, we seethat (2) isidentical to (1), in the specia case of free-text where
there is one unique default context.

3.1 A Richer Inverted Index

We have extended an existing full-text information retrieval system, Juru [8] developed at the IBM
Research Lab in Haifa, so asto be able to store and retrieve not only free-text but pairs of the form
(t,c) so asto follow the indexing scheme described above. At indexing time, XML documents are
parsed by an XML parser and a vector of (t,c) pairsis extracted to create the document profile. By
storing terms with their contexts, the posting-list of term t that encapsulates all occurrences of tin all
documents, is split into different posting lists, one posting list for each of the contexts of t. This
splitting allows the system to efficiently handle retrieval of occurrences of aterm t under a specia
context c.

While a variety of storage solutions is possible, for convenience reasons we use a storage scheme
first introduced in [9] for navigating XML collections and implemented in the XMLFS system that
allows to store such pairs (t,c) in thelexicon of aregular full-text information retrieval system via
only minor modifications: each pair (t,c) is presented to the indexer as a unique key t#c. At retrieval
time, the system can identify the precise occurrences of the term t under a given context ¢ in the
collection, by fetching the posting list of the key t#c. The system isalso able to retrieve any subset
of the contexts under which term t appears by merging the relevant posting lists. All index terms
(that form the lexicon of the system) in atrie data structure and therefore all contexts under which
the term t has been stored can easily be retrieved by suffix matching of “t#.” See[10] for more
information on the trie structure.

4 Querying via XML Fragments

At retrieval time, the query isindexed and for each query pair (t;,c;) the agorithm retrieves all the
contexts of t; via suffix matching of t# as explained above.
Thus, for aquery of the form:

<chapter><title>XM tutorial s</title></chapter>

we produce a profile® of the form:
{(xm, chapter/title), (tutorial,chapter/title)}

More complex queries can aso be expressed smply as “bags of words® decorated by location paths.
Thus assume that the user wants documents whose titles relate to XML tutorias but whose contents
dedl for instance with XPath and XQuery, without really knowing with which path they should be
associated, /he can express a query of the form:

<article><title>XM. tutorials</title></article> relating to XPath XQuery

® Note that the free-text part goes through the regular stemming and normalization stages before being
decorated with contextual information. Also location information is kept to verify that terms appearing in the
same context, also appear in the same instantiation of this context.

then a profile of the following form will be produced:
{(xm ,article/title),(tutorial,article/title),
(relate,null)(XPath, null), (XQuery,null)}

In addition the user should be able to use dl the usual operators typically used on Web search
services such as phrase operators (such as on the “ XML tutorias’ phrase below) and +/- operator
such as on the “ XPeth” term below.

<article><title>"XM tutorials"</title></article> relating to +XPath XQuery

4.1 Theranking algorithm

Following the model described in 3.1, all contexts are assigned a cr score according to their
similarity to the query term context c;. For each ssimilar context ¢’ (a context with a positive cr score
i.e. somehow similar to “chapter/title’ in our example) the algorithm retrieves the posting lists of
(t,¢’), and scans the posting lists to accumulate document scores. During accumulation, each
occurrence of the term (t,c’) within a document contributes to the document score according to the
weight of the term in context as well as the resemblance between cand c’.

The accumulation algorithm is presented in details in Figure 3. Note that the algorithm is somehow
simplified in the sense that classical performance optimization (such as the order of processing of
postings) are disregarded in order to focus only on the scoring method.

The key parameters needed to adequately compute each document score when accumulating results
are according to Formula (2), w(t,c) and cr. In order to define cr, we propose to represent contexts as
gtrings of the XML dements forming their XPath and use techniques from the string and pattern
matching community. Our proposed cr is discussed below.

4.2 Context resemblance measure

Let us consider a query of the form <ql><g2><q3>T</q3></g2></q1> expressed as an XML
document fragment as suggested above. We express the context of the free-text part T as Q=0,/q2/0,
or for simplifying our notation since we will now consider the path as a string of elements, let us
note it Q=q,0p0s. Similarly, let us note the context of occurrence of T in an arbitrary XML

document, A=a;..as. Table 1 below gives an example ingtantiation for Q and A.

al a2 a3 al ab ab| ar a8
language | media | book | chapter | section | subsection| title | number

O 02 03
language book title

Table 1: Examples of location pathsfor Q and A

Input: g = ((t,C1),,(t,C),..(t,Cn)), the profile of a given query
N : the number of documents to retrieve

Output: the most relevant n documents for the input query

L et AC be the accumulator for query units (t,c) and their associated postings
Assign AC? null
For each term-context pair (t,c) inq
0 Rerieve C, the set of al contexts of t // thisis done by fetching the sub-tree of the trie
whose root is associated with the prefix t#
o If (c!'=null)//iftisnot afree-text query term
o Then
0 For eachcontextc’ inC
o Computecr(c',c) // the context resemblance score between cand ¢
0 Assign context_score(t,c') ? cr(c'c)
o If context_score(t,c')>0
Retrieve the posting list p(t,c’) from the index
Add <(t,c’),p(t,c’)> to AC //the accumulator stores the term associated not
only with the exact context specified in the query also related ones
0 Else //tisafree-text query term
0 For eachcontextc’ inC
Retrieve the posting list p(t,c’) from the index.
0 Merge dl posting lists into one posting list, p(t,null).
0 Assign context_score(t,null) ? 1
0 Add <(t,null),p(t,null)>to AC
4. For eachdocin collection D // initialize the score of each document to zero
o Score(doc) =0
5. For each par <(t,c),p(t,c)> in AC
o For each posting entry (d, OccNo((t,c),d)) in p(t,c)//where OccNo((t,c),d)stands for
the number of occurrences of (t,c) asa pair in the profile of document d
o Compute W((t,c),d) = log(OccNo((t,c),d)+1) * log(N/Nt), where
N is the—number of documentsin collection,
Nt — number of documents containing (t,c) //regular free-text score
0 Score(d) ? Score(d) +context_score(t,c) * W((t,c),d) //update the score of d
6. For eachdoc in collection D,
Score(doc) ? Score(doc) / |doc| // Normalize document scores by document length |d|
which can be for instance log(1 + average occurrence number of (t,c) in d)
7. Sort and return then documents with the highest scores.

wnE

Figure 3: Ranking algorithm for flexible queries

We suggest now to define the context resemblance between Q and A, cr(Q,A), where the value of cr
ranges between 0 and 1, with 1 corresponding to Q and A being identical. Additional desired
properties of cr are that it should get a high value when fulfilling the following criteria:

1. The context A includes many of the g’sof Q in the right order. In our example above this
number equals 3 in for a;a;a;

2. The occurrences of theq;’s are closer to the beginning of A than to the tail, based on the
intuition that the higher levels are more discriminatory than the lower levelsin the XML
document tree. In our example a match of q;0.9; with a;asa; will be preferable to a match
with a;asag

3. The occurrences of theq;’sin A are close to each other: In our example a match of g;0.0s
with aasa, will be preferable to a match with a;asas

4. Thelength of A is shorter for the same number of matched elements, in other words,
between two contexts which match on exactly the sameq;, the shorter one will get a higher
score.

We propose to use 4 scores to account for each of these criteria, respectively:

1. LCYQ,A): Weuseaclassica dynamic programming agorithm in order to compute the
Longest Common Subsequence (LCS) [11], between Q and A as strings. We note the
length of this longest subsequence Ics(Q,A), and propose to use this value normalized by
|Q|, the length of the string Q, in order to account for criterion #1.

LCSQA) = les(QA)/IQ.
We easly verify that 0= LCHQA) = 1.

2. POYQ,A): Wefirst compute, according to Ics(Q,A) what would be the average positioning of the
optimal matching of Q within A (that we note AverOptimal Position). This is achieved when the
match starts on the first element of A and continues without gaps. Thus, in our example of Table 1,
Aver Optimal Position = 2. Then we evaluate, using the LCS agorithm, the actua average
positioning (AP). Note that in this case, one islooking for the leftmost alignment of the match that
achieves Ic5(Q,A). AP takes the value 3.66 in our example. Last, we compute how far the actua
positioning is from the optimal one, by subtracting AverOptimal Position from AveragePosition,
and normdiize this difference by its possible range. Criterion 2 is thus reflected by the following
factor,

POS(Q,A) = 1-((AP-AverOptimal Position)/(JA|-2* Aver Optimal Position+1)).
Its value ranges between 0 and 1, with avalue of 0 in the case of no match and, and a value of 1 for
aleftmost match.

3. GAPSQ,A): We propose to use another version of the LCS agorithm in order to capture the
LCS aignment with minimum gaps between the occurrences of the g’s. Theinterested reader
should consult [12] for the details on how to compute this score that we note here gaps. In our
previous Table 1 example, gapswill take avalue of 4. In addition we propose to normalize it
by the length of the common subsequence added to the gaps value so asto ensure that the total
score will beinferior to 1. Thus, in order to account for criterion #3, we suggest a normalized
value of gaps that we note GAPS and compute as.

GAPS(Q,A) = gaps/(gaps + Ics(Q,A)).
Thisfactor will take a value of zero in the case of a perfect match, since then gaps=0.

4. LD(Q,A): Findly, in order to give higher valuesto A’'swhose lengthsis similar to Q, we
suggest to compute the length difference Id between A and Ics(Q,A) normalized by the length
of A. Thusthe find factor that evaluates the length difference can be computed as:

LD(Q.A)= (JAl- IcsS(QA)/IAI.

Again this factor takes a value between 0 and 1 and is 0 in the case of a perfect match between
A and Q.

These scores are then combined as follows to compute the cr score:
cr(QA) =aLCY(QA) + RPOS(QA) — ?GAPS(Q,A) —dLD(Q,A)

Where a,3,?and d are positive parameters ranging between 0 and 1 that represent the comparative
importance of each factor. They can be tuned but must satisfy a + R= 1, so that cr(Q,A) =1 in case
of aperfect match, and ?and d must be chosen small enough so that cr cannot take a negative vaue .

The following Tables provide some examples of the effects of each factor on the total cr value. We
take as Q= (110203 = book/chapter /title, and see how various instantiations of A compareto Q. Our
current experiments show that setting the parameters a,3,?and dto respectively 0.75, 0.25, 0.25, 0.2
gives good results®, and thus were used in our examples below. In addition, for the sake of the
readability, we isolate for each factor, its non-normalized key component, namely |Ics (the longest
common substring) in LCS, AP (the average position) in POS, gaps in GAPS and Id (the length
difference) in LD. This should alow the reader to easily verify their vaue.

A lcs | AP | gaps | Id cr
media/book/chapter /title/number 3] 3 0 2 | 084
media/chapter/book/title/number 2131 0 3 | 053
medialtitle/chapter /book/number 1[2. 0 4 | 0.29
magazine/volume/articleftitle/number 1141 0 4 | 019
Table2: Effect of the longest common substring (Ics) on cr
A lcs | AP | gaps | Id cr
book/chapter /title/subtitle/number 3] 2 0 2 | 092
media/book/chapter /title/ number 3] 3 0 2 | 084
media/catalog/ book/chapter /title 3| 4 0 2 | 0.75
Table 3: Effect of the average position (AP) on cr
A lcs | AP| gaps | Id cr
media/catal og/ book/chapter /title/subtitle/number 3| 4 0 4 | 0.78
catal og/book/chapters/chapter/section/title/number | 3 | 4 2 4 | 0.68
Table 4: Effect of the gaps (gaps) on cr
A lcs | AP | gaps | Id cr
book/chapter /title/subtitle/subtitle/ number/bullet 3| 2 0 4 | 0.88
book/chapter /title/subtitle 3| 2 0 11095

Tableb5: Effects of the length difference (Id) on cr

In the three previous examples above, the vaue of 1cs(Q,A) was equal to the length of Q yielding a
high cr score for the corresponding contexts. If we change the form of Ain Table 3 for instance by

® Note though that more extensive experimentation is needed to decide on the ideal parameters.

replacing the element “chapter” with the element “section” so as to change the value of 1cs(Q,A) to
2, weimmediately see a clear decrease in the cr score (for the same "book/chapter ftitle” query) as
shown in Table 6.

A lcs| AP | gaps | Id cr

book/section'title/subtitle/number 2 2 1 3| 051
media/lbook /sectionvtitle/number 21 3 1 3 | 045
media/catalog, book/sectiontitle 21 4 1 3 | 0.39

Table6: Effects of AP with a smaller Ics

5 Someexamplesof XML fragments queriesderived from INEX

We have implemented this support for XML fragments querying into our Juru search engine. We
show in the next two figures some examples of results for two queries derived from the INEX
collection. In the first example (Figure 4), the user specifies that the phrase 3description logics’
should appear in the abstract, but does not indicate any specific context for the other query terms
“ABox”, “TBox”, and “reasoning”. The following example in Figure 5 shows a dightly more
complex query where the full query is encapsulated by the “article” element.

For both examples, ranked results are returned in the same way they would be in aregular full-text
IR system. One small difference, from the GUI viewpoint, is that the user can pick here, at query
time, the elements that she wants to appear in the result snippets, (see the “target elements’ field)
which are in both cases, the journa name (ti), the year of publication of the article (yr) and the article
title (atl).

Our preliminary experiments show nice results on smple queries as such. The next step for usisto
verify viausers studies that the approximate matching on paths evaluated through our cr measure
will improve the usability of our model aswell as the quality of our rankings.

6 Concluson and Future Work

We have presented here an approach for XML search that focuses on the information needs of users
and therefore addresses the search issue from an IR viewpoint. In the same spirit as the vector space
model where free-text queries and documents are objects of the same nature, we suggest that query
be expressed in the same form as XML documents, so asto compare “apples and apples’. We have
presented an extension of the vector space model that integrates a measure of similarity between
XML paths, and have defined a novel ranking mechanism derived from this model. We have
embodied this model in our state-of -the-art information retrieva system, Juru. While the informal
experiments we have conducted are encouraging, we are now waiting for the INEX evauation to
validate our approach.

2 Juru XML support - Microsoft Internet Explorer

File Edit WView Favorites Tools Help

eBad< > ‘__:J E @ :] /':j Search \t_'i'_(Favorites eMedia @ fi_:v ..__;,. b _J

Address |@ C:\Papers\Proposals‘\SIGIR 2002 Workshop on XML and IR \genda\experiments\descriptionlogics.hitm b | Go Links ¥
GGUS[EV} j ffbisearch web G0 cearc | g & | Pagshank gy fo - [Ele - 2PHC

Iy

[[|<ab5tract>"descriptinn logics"</abstract>ABox)
TBox reasoning{
Query:

iTarget Elements: I |artic|e.ti.yr.at|

[Submit Query J [Reset]

XML Search'XMTI Filestinex-1.3'xml-new!'tk\199%x4069.xml 1.00

<article>

<. ><ti=IEEE INTELLIGENT SYSTEMS </ti=

L 2ayr=1998 </yr=

<...»<atl=An Industrial Strength Description Logics-Based Configurator Platform«</atl=
<farticle>

\XMLSearch' XM Filesinex-1.3xml-new'\ex\2000'k067]1.xml 0.83

<article =

<.,.><ti=IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING «</ti=
Ly =1995 </ yr=

<...=<atl=Description Logics in Data Management</atl=
</article=

\XMLSearch'XMLFileslinex-1.3'xml-new\ex\20000k0576.xml 0.79

<article=

... ><ti=IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING </ti=

T YT 1998 </ yr=

=..==atl=Consistency Checking in Complex Object Database Schemata with Integrity Constraints </atl=
<farticle=

24

I@ :i My Computer

Figure4: Example of search results for an XML fragment query derived from INEX

2 Juru XML support - Microsoft Internet Explorer

File Edit WView Favorites Tools Help i
Qi © M@ 6 P Foroms @ws @ 3- 5% 8 - [
Address |@ C:\Papers\Proposals‘\SIGIR 2002 Workshop on XML and IR \genda\experimentsnonmonotonic2.htm b | Go Links ¥
GGDSIEVi j ffbisearch web G0 cearc | ¢g o | FaacBank gyp o [Ete v A High
M
i_ | -|_<arti_c1e> <gecx>"nonmonotonic reasoning™</sec> ﬁ
<atl>»-calendar -"call for papers"</atl> =
Qneq.' "nelief revision™ =
<farticle>
[| M
iTarget Elements: I |ar1ic|e. ti.yr.atl
[Submit Query J [Reset]
\XMLSearch'XMILFileslinex-1.3'xml-new'tk\1999k0143.xml 1.00
zarticle =
=...==<ti= [EEE TRANSACTIONS OMN KNOWLEDGE AND DATA ENGINEERING =/ti=
. 2ayr=1999 </ yr=
<...»<atl>= Nonmonotonic Logic Programming </atl=
<farticle>
\XMLSearch' XML Files'inex-1.3'xml-new'ex'2000'x6051.xml (.88
<article=
<...==ti=IEEE INTELLIGENT SYSTEMS</ti=
<L 2<yr=2000</yr=
=...==atl> Al at IBM Research=/atl>
</article=
\XMLSearch'XMLFileslinex-1.3xml-new'\ex'\2000'x1008.xml 0.78
<article=
<...=<ti= IEEE INTELLIGENT SYSTEMS </ti=
o YT =2000 </ yr=
=..=<atl> Al's Greatest Trends and Controversies </atl= il
<farticle=
| M
I@ Daone ﬂ My Computer

Figure5: A more complex XML fragment query

Acknowledgements

We are grateful to the XMLFS team, Benny Mandler, NaamaKraus, Alain Azagury and Michael
Factor, for adding the original lexicon encoding of XML paths to Juru and for fruitful brainstorming
on XML stores. Matan Mandelbrod deserves specia thanks for implementing a significant part of
the XML support in Juru. Finaly, we thank Dafna Sheinwald for her last minute reviewing.

References

1
2.
3

10.

11.

The XML industry porta, http://www.xml.org

XQuery — The XML Query language, http//www.w3.0rg/TR/2002/WD-xquery-20020430
N. Fuhr and K. GrossJohann, “XIRQL: A Query Language for Information Retrieval in
XML Documents’. In Proceedingsof SGIR 2001, New Orleans, LA, 2001

ACM SIGIR 2000 Workshop on XML and IR, SIGIR Forum, 2000

R. Baeza-Yates, D. Carmdl, Y. Maarek and A. Soffer (eds), JASIST Specia Issue on XML
and Information Retrieval, 53: 6, 2002

D. Chamberlin, P. Fankhauser, M. Marchiori and J. Robie, XML Query Use Cases, W3C
Working Draft 20 Dec 2001, http://www.w3.org/TR/2001/WD-xmlquery-use-cases-
20011220

The Initiative for the Evauation of XML retrieval, http://gmir.dcs.amw.ac.uk/INEX/

D. Carmel, E. Amitay, M. Herscovici, Y. Maarek, Y. Petruschka and A. Soffer, "Juru at
TREC 10 - Experiments with Index Pruning”, In Proceedings of NIST TREC 10, Nov 2001.
A. Azagury, M. Fector, Y. Maarek and B. Mandler, “A Novel Navigation Paradigm for
XML Repositories’, pp 515-525 in [4]

A. Azagury, M. Factor, N. Kraus, I. Loy and B. Mandler, “Index Infrastructure for an XML
repository”, in the ACM SIGIR 2002 XML and IR workshop notes, Tampere, Finland, Aug
2002.

D. S. Hirschberg, “A Linear Space Algorithm for Computing Maxima Common
Subsequences’, Communications of the ACM, 18: 6, pp 341--343 (1975).

E. W. Myers, “Incremental Alignment Algorithms and their Applications”, Tech. Rep. 86-
22, Dept. of Computer Science, U. of Arizona, (1986).

