
An Extension of the Vector Space Model for
 Querying XML Documents via XML Fragments

David Carmel*, Nadav Efraty**, Gad M. Landau**, Yoelle S. Maarek*, Yosi Mass*

*IBM Research Lab in Haifa
Haifa 31905, ISRAEL

** Computer Science Dept
Haifa University, Haifa, ISRAEL

Abstract

To date, most of the work on XML query and search has stemmed from the document
management and database communities and from the information needs of business applications,
as evidenced by existing XML query languages such as W3C's XQuery, which is strongly
inspired by SQL. We propose here to extend the realm of XML by supporting the information
needs of users wishing to query XML collections in a flexible way without knowing much about
the documents structure. Rather than inventing a new query language, we suggest to query XML
documents via pieces of XML documents or “XML fragments” of the same nature as the
documents that are queried. We then present an extension of the vector space model for
searching XML collections and ranking search results by relevance.

1 Motivation

XML (the eXtensible Markup Language) [1] can be used not only for exchanging data in business-
to-business applications, but also for representing any kind of free-text documents, especially
narrative documents such as articles, business reports, and naturally Web pages. Most of the current
XML query languages, e.g., XQuery [2], and systems that embody them, are geared towards
structure and data, and typically expect “binary answers” to very specific queries. While this is
appropriate for XML documents that data exchange between applications, this is less so for
discovering of narrative documents. As observed by [3], an overwhelming majority of the required
features in the W3C proposal for an XML Query Languages are “data-centric'', and only one is
“document-centric”, i.e., dedicated to processing simple text conditions.

The need for document centric approaches has already been identified in the IR community, [4].
More recently the XQuery working group has been conducting debates in order to investigate how to
add full-text search features and more particularly ranking capabilities in XQuery. In parallel, a
variety of systems that support a document-centric approach have been proposed, [3,5]. While all of
these efforts represent a significant step in this direction, they still focus on giving control to
applications as well as users. We discuss below a simplified approach for concentrating exclusively
on the information needs of users rather than the very specific control and management needs of
developers or applications.

2 Approach Overview

Let us consider the following example derived1 from [6] where a user wants to find all sections
whose title refers to "XML", in the document below.

1 The original “Q9 example” in [6] consists of “finding all section or chapter titles that contain the word XML,
regardless of the level of nesting”. Our task here is slightly different as we are not looking for occurrences of

<chapter>
 <title>XML Data Model</title>
 <section>
 <title>Syntax For Data Model</title>
 </section>
</chapter>
<chapter>
 <section>
 <title>XML</title>
 <section>
 <title>Basic Syntax</title>
 </section>
 </section>
</chapter>
<chapter>
 <section>
 <title>XML and Semistructured Data</title>
 </section>
</chapter>

Figure 1: XML Document Example

In XQuery s/he would express a query of the form:

<results>
 {
 for $t in document("books.xml")//section/title
 where contains($t/text(), "XML")
 return $t
 }
</results>

Figure 2: XQuery Example

Even if the XQuery syntax could be made less “cryptic”, the user would still need to know about
elements like section and title. Worse, assume that there is no section but a chapter with a relevant
title, the user would need to reformulate his query, replacing the string //section/title with
//chapter/title. It would be possible to specify ahead of time that both elements qualify2 by using the
“union” operator. However, both chapter and section matches would be considered equally, even if
one might be interested in chapters only if no relevant sections are found. More generally, the user
would need to specify exhaustively the name of all alternate elements that would be “close enough”.
Note that it might be possible to automate this process by using the extension mechanism in XPath,
but this would require ad-hoc programming, while we would much prefer here a generic process.

We suggest here a more user-friendly approach where users can express queries from the simplest
possible way (free-text) to more complex structural constraints depending on their knowledge of the
DTD. They should get not only perfect matches but also “close enough” ones ranked according to a
certain measure of relevance. One key contribution of this work is to avoid defining yet another
complex XML query language but rather to allow users to express their needs as fragments of XML

the element title, but for document units (in our case sections), hence we changed Q9 as well as the
corresponding searched data.
2 This is actually the original Q9 example in [6] where the “for” statement of our example reads: “for $t in
document("books.xml")//chapter/title union document("books.xml")//section/title”

documents, or XML fragments for short. Users should not need to reformulate their queries in case
they become too specific. The ranking mechanism should be responsible for giving priority to the
closest form. This approach of using a very simple “fragment-based” language rather than XQuery is
somehow analogous to using free-text rather than Boolean queries in IR: less control is given to the
user, and most of the logic is put in the ranking mechanism so as to best match the user’s needs.

We explain below how we propose to extend the vector space model so as to be able to compare
XML fragments and XML documents as objects of the same nature. We then explain how we have
embodied our model in a regular IR system, and briefly describe the basic principles our ranking
mechanism that is key to our entire approach. Note that we do not provide a real formal evaluation
yet, as evaluation experiments will be conducted in the context of INEX (Initiative for the evaluation
of XML Retrieval) effort [7] later this year.

3 Extending the vector space model

Let us remind here that in the regular vector space model, documents and queries are indexed in a
similar manner, so as to produce vectors in a space whose dimensions represent each a distinct
indexing unit 3 ti. The coordinate of a given document D on dimension ti, is noted)(iD tw and stands
for the “weight” of ti in document D within a given collection. It is typically computed using a score
of the tf x idf family that takes into account both document and collection statistics. The relevance of
the document D to the query Q, noted below),(DQρ , is then usually evaluated by using a measure
of similarity between vectors such as the cosine measure, where:

DQ

twtw
DQ

iD
DQti

iQ

∗

∗
=

∑ ∈
)()(

),(Iρ (1)

We propose here to use as indexing units not single terms4 but pairs of the form (ti,ci), where terms
are qualified by the context in which they appear. In order to identify this context of appearance, we
borrow from the XPath model of XML documents – where each document is represented by a tree of
nodes – its use of a path notation for navigating through the hierarchical structure of the document.

Thus, in Figure 1, the first occurrence of “XML” will be associated with the path “/Chapter/Title” as
its context. We suggest then changing the similarity measure accordingly. Thus, in (1) the weight of
individual terms should be replaced by a weight in context that we note)(, iiD ctw . In addition, we
propose to relax the scalar product model by accounting not only for exact “term in context”
matching (orthogonal dimensions) but also for context resemblance. In other words, we suggest to
increase the relevance score not only when a same (ti ,ci) is found in the query and the document,
but also when a same ti appears in different but somehow related contexts ci and cj. Thus, if we note
cr (context resemblance), the measure of resemblance between contexts, we propose to use as
measure of similarity between XML fragments and XML documents:

3 For the sake of the simplicity, we assume here that the basic indexing unit is a single term, but the approach
applies also in the case of multi-word or phrase units.
4 A desired property of the weights is that contexts can be unified so that w(ti, cj+ck) = w(ti, cj) + w(ti, ck)

DQ

cccrctwctw
DQ Qciti Dckti

kikiDiiQ

∗

∗∗
=

∑ ∑∈ ∈),(),(
,),(),()(

),(ρ (2)

We impose that cr values range between 0 and 1, where 1 is achieved only for a pair of perfectly
identical contexts. Thus, we see that (2) is identical to (1), in the special case of free-text where
there is one unique default context.

3.1 A Richer Inverted Index

We have extended an existing full-text information retrieval system, Juru [8] developed at the IBM
Research Lab in Haifa, so as to be able to store and retrieve not only free-text but pairs of the form
(t,c) so as to follow the indexing scheme described above. At indexing time, XML documents are
parsed by an XML parser and a vector of (t,c) pairs is extracted to create the document profile. By
storing terms with their contexts, the posting-list of term t that encapsulates all occurrences of t in all
documents, is split into different posting lists, one posting list for each of the contexts of t. This
splitting allows the system to efficiently handle retrieval of occurrences of a term t under a special
context c.

While a variety of storage solutions is possible, for convenience reasons we use a storage scheme
first introduced in [9] for navigating XML collections and implemented in the XMLFS system that
allows to store such pairs (t,c) in the lexicon of a regular full-text information retrieval system via
only minor modifications: each pair (t,c) is presented to the indexer as a unique key t#c. At retrieval
time, the system can identify the precise occurrences of the term t under a given context c in the
collection, by fetching the posting list of the key t#c. The system is also able to retrieve any subset
of the contexts under which term t appears by merging the relevant posting lists. All index terms
(that form the lexicon of the system) in a trie data structure and therefore all contexts under which
the term t has been stored can easily be retrieved by suffix matching of “t#.” See [10] for more
information on the trie structure.

4 Querying via XML Fragments

At retrieval time, the query is indexed and for each query pair (ti,ci) the algorithm retrieves all the
contexts of ti via suffix matching of ti# as explained above.
Thus, for a query of the form:

<chapter><title>XML tutorials</title></chapter>

we produce a profile 5 of the form:

{(xml, chapter/title), (tutorial,chapter/title)}

More complex queries can also be expressed simply as “bags of words” decorated by location paths.
Thus assume that the user wants documents whose titles relate to XML tutorials but whose contents
deal for instance with XPath and XQuery, without really knowing with which path they should be
associated, s/he can express a query of the form:

<article><title>XML tutorials</title></article> relating to XPath XQuery

5 Note that the free-text part goes through the regular stemming and normalization stages before being
decorated with contextual information. Also location information is kept to verify that terms appearing in the
same context , also appear in the same instantiation of this context.

then a profile of the following form will be produced:

{(xml,article/title),(tutorial,article/title),
(relate,null)(XPath,null), (XQuery,null)}

In addition the user should be able to use all the usual operators typically used on Web search
services such as phrase operators (such as on the “XML tutorials” phrase below) and +/- operator
such as on the “XPath” term below.

<article><title>”XML tutorials”</title></article> relating to +XPath XQuery

4.1 The ranking algorithm

Following the model described in 3.1, all contexts are assigned a cr score according to their
similarity to the query term context ci. For each similar context c’ (a context with a positive cr score
i.e. somehow similar to “chapter/title” in our example) the algorithm retrieves the posting lists of
(ti,c’), and scans the posting lists to accumulate document scores. During accumulation, each
occurrence of the term (t,c’) within a document contributes to the document score according to the
weight of the term in context as well as the resemblance between c and c’.
The accumulation algorithm is presented in details in Figure 3. Note that the algorithm is somehow
simplified in the sense that classical performance optimization (such as the order of processing of
postings) are disregarded in order to focus only on the scoring method.

The key parameters needed to adequately compute each document score when accumulating results
are according to Formula (2), w(t,c) and cr. In order to define cr, we propose to represent contexts as
strings of the XML elements forming their XPath and use techniques from the string and pattern
matching community. Our proposed cr is discussed below.

4.2 Context resemblance measure

Let us consider a query of the form <q1><q2><q3>T</q3></q2></q1> expressed as an XML
document fragment as suggested above. We express the context of the free-text part T as Q=q1/q2/q3,
or for simplifying our notation since we will now consider the path as a string of elements, let us
note it Q=q1q2q3. Similarly, let us note the context of occurrence of T in an arbitrary XML
document, A=a1…a8. Table 1 below gives an example instantiation for Q and A.

a1 a2 a3 a4 a5 a6 a7 a8
language media book chapter section subsection title number

q1 q2 q3
language book title

Table 1: Examples of location paths for Q and A

Figure 3: Ranking algorithm for flexible queries

• Input: q = ((t1,c1),,(t2,c2),..(tk,cn)), the profile of a given query
 N : the number of documents to retrieve

• Output: the most relevant n documents for the input query

1. Let AC be the accumulator for query units (t,c) and their associated postings
2. Assign AC ? null
3. For each term-context pair (t,c) in q

o Retrieve C, the set of all contexts of t // this is done by fetching the sub-tree of the trie
whose root is associated with the prefix t#

o If (c != null) // if t is not a free-text query term
o Then

o For each context c’ in C
o Compute cr(c’,c) // the context resemblance score between c and c’
o Assign context_score(t,c’) ? cr(c’c)
o If context_score(t,c’)>0

• Retrieve the posting list p(t,c’) from the index
• Add <(t,c’),p(t,c’)> to AC //the accumulator stores the term associated not

only with the exact context specified in the query also related ones
o Else // t is a free-text query term

o For each context c’ in C
 Retrieve the posting list p(t,c’) from the index.
o Merge all posting lists into one posting list, p(t,null).
o Assign context_score(t,null) ? 1
o Add <(t,null),p(t,null)> to AC

4. For each doc in collection D // initialize the score of each document to zero
o Score(doc) = 0

5. For each pair <(t,c),p(t,c)> in AC
o For each posting entry (d, OccNo((t,c),d)) in p(t,c)//where OccNo((t,c),d)stands for

the number of occurrences of (t,c) as a pair in the profile of document d
o Compute W((t,c),d) = log(OccNo((t,c),d)+1) * log(N/Nt), where

N is the –number of documents in collection,
Nt – number of documents containing (t,c) //regular free-text score

o Score(d) ? Score(d) +context_score(t,c) * W((t,c),d) //update the score of d
6. For each doc in collection D,

 Score(doc) ? Score(doc) / |doc| // Normalize document scores by document length |d|
which can be for instance log(1 + average occurrence number of (t,c) in d)

7. Sort and return the n documents with the highest scores.

We suggest now to define the context resemblance between Q and A, cr(Q,A), where the value of cr
ranges between 0 and 1, with 1 corresponding to Q and A being identical. Additional desired
properties of cr are that it should get a high value when fulfilling the following criteria:

1. The context A includes many of the qi’s of Q in the right order. In our example above this
number equals 3 in for a1a3a7

2. The occurrences of the qi ’s are closer to the beginning of A than to the tail, based on the
intuition that the higher levels are more discriminatory than the lower levels in the XML
document tree. In our example a match of q1q2q3 with a1a3a7 will be preferable to a match
with a1a3a8

3. The occurrences of the qi’s in A are close to each other: In our example a match of q1q2q3

with a2a3a4 will be preferable to a match with a1a3a5
4. The length of A is shorter for the same number of matched elements, in other words,

between two contexts which match on exactly the same qi, the shorter one will get a higher
score.

We propose to use 4 scores to account for each of these criteria, respectively:

1. LCS(Q,A): We use a classical dynamic programming algorithm in order to compute the
Longest Common Subsequence (LCS) [11], between Q and A as strings. We note the
length of this longest subsequence lcs(Q,A), and propose to use this value normalized by
|Q|, the length of the string Q, in order to account for criterion #1:
LCS(Q,A) = lcs(Q,A)/|Q|.
We easily verify that 0= LCS(Q,A) = 1.

2. POS(Q,A): We first compute, according to lcs(Q,A) what would be the average positioning of the
optimal matching of Q within A (that we note AverOptimalPosition). This is achieved when the
match starts on the first element of A and continues without gaps. Thus, in our example of Table 1,
AverOptimalPosition = 2. Then we evaluate, using the LCS algorithm, the actual average
positioning (AP). Note that in this case, one is looking for the leftmost alignment of the match that
achieves lcs(Q,A). AP takes the value 3.66 in our example. Last, we compute how far the actual
positioning is from the optimal one, by subtracting AverOptimalPosition from AveragePosition,
and normalize this difference by its possible range. Criterion 2 is thus reflected by the following
factor,
POS(Q,A) = 1-((AP-AverOptimalPosition)/(|A|-2*AverOptimalPosition+1)).
Its value ranges between 0 and 1, with a value of 0 in the case of no match and, and a value of 1 for
a leftmost match.

3. GAPS(Q,A): We propose to use another version of the LCS algorithm in order to capture the
LCS alignment with minimum gaps between the occurrences of the qi’s. The interested reader
should consult [12] for the details on how to compute this score that we note here gaps. In our
previous Table 1 example, gaps will take a value of 4. In addition we propose to normalize it
by the length of the common subsequence added to the gaps value so as to ensure that the total
score will be inferior to 1. Thus, in order to account for criterion #3, we suggest a normalized
value of gaps that we note GAPS and compute as:
GAPS(Q,A) = gaps/(gaps + lcs(Q,A)).
This factor will take a value of zero in the case of a perfect match, since then gaps=0.

4. LD(Q,A): Finally, in order to give higher values to A’s whose lengths is similar to Q, we
suggest to compute the length difference ld between A and lcs(Q,A) normalized by the length
of A. Thus the final factor that evaluates the length difference can be computed as:
LD(Q,A)= (|A|- lcs(Q,A))/|A|.

Again this factor takes a value between 0 and 1 and is 0 in the case of a perfect match between
A and Q.

These scores are then combined as follows to compute the cr score:

cr(Q,A) = aLCS(Q,A) + ßPOS(Q,A) – ? GAPS(Q,A) – dLD(Q,A)

Where a,ß,? and d are positive parameters ranging between 0 and 1 that represent the comparative
importance of each factor. They can be tuned but must satisfy a + ß = 1, so that cr(Q,A) =1 in case
of a perfect match, and ? and d must be chosen small enough so that cr cannot take a negative value .

The following Tables provide some examples of the effects of each factor on the total cr value. We
take as Q= q1q2q3 = book/chapter/title, and see how various instantiations of A compare to Q. Our
current experiments show that setting the parameters a,ß,? and d to respectively 0.75, 0.25, 0.25, 0.2
gives good results6, and thus were used in our examples below. In addition, for the sake of the
readability, we isolate for each factor, its non-normalized key component, namely lcs (the longest
common substring) in LCS, AP (the average position) in POS, gaps in GAPS and ld (the length
difference) in LD. This should allow the reader to easily verify their value.

A lcs AP gaps ld cr
media/book/chapter/title/number 3 3 0 2 0.84
media/chapter/book/title/number 2 3 0 3 0.53
media/title/chapter/book/number 1 2 0 4 0.29
magazine/volume/article/title/number 1 4 0 4 0.19

Table 2: Effect of the longest common substring (lcs) on cr

A lcs AP gaps ld cr
book/chapter/title/subtitle/number 3 2 0 2 0.92
media/book/chapter/title/ number 3 3 0 2 0.84
media/catalog/book/chapter/title 3 4 0 2 0.75

Table 3: Effect of the average position (AP) on cr

A lcs AP gaps ld cr
media/catalog/book/chapter/title/subtitle/number 3 4 0 4 0.78
catalog/book/chapters/chapter/section/ title/number 3 4 2 4 0.68

Table 4: Effect of the gaps (gaps) on cr

A lcs AP gaps ld cr
book/chapter/title/subtitle/subtitle/ number/bullet 3 2 0 4 0.88
book/chapter/title/subtitle 3 2 0 1 0.95

Table 5: Effects of the length difference (ld) on cr

In the three previous examples above, the value of lcs(Q,A) was equal to the length of Q yielding a
high cr score for the corresponding contexts. If we change the form of A in Table 3 for instance by

6 Note though that more extensive experimentation is needed to decide on the ideal parameters.

replacing the element “chapter” with the element “section” so as to change the value of lcs(Q,A) to
2, we immediately see a clear decrease in the cr score (for the same "book/chapter/title " query) as
shown in Table 6.

A lcs AP gaps ld cr
book/section/title/subtitle/number 2 2 1 3 0.51
media/book/section/title/number 2 3 1 3 0.45
media/catalog, book/section/title 2 4 1 3 0.39

Table 6: Effects of AP with a smaller lcs

5 Some examples of XML fragments queries derived from INEX

We have implemented this support for XML fragments querying into our Juru search engine. We
show in the next two figures some examples of results for two queries derived from the INEX
collection. In the first example (Figure 4), the user specifies that the phrase ³description logics”
should appear in the abstract, but does not indicate any specific context for the other query terms
“ABox”, “TBox”, and “reasoning”. The following example in Figure 5 shows a slightly more
complex query where the full query is encapsulated by the “article” element.
For both examples, ranked results are returned in the same way they would be in a regular full-text
IR system. One small difference, from the GUI viewpoint, is that the user can pick here, at query
time, the elements that s/he wants to appear in the result snippets, (see the “target elements” field)
which are in both cases, the journal name (ti), the year of publication of the article (yr) and the article
title (atl).

Our preliminary experiments show nice results on simple queries as such. The next step for us is to
verify via users’ studies that the approximate matching on paths evaluated through our cr measure
will improve the usability of our model as well as the quality of our rankings.

6 Conclusion and Future Work

We have presented here an approach for XML search that focuses on the information needs of users
and therefore addresses the search issue from an IR viewpoint. In the same spirit as the vector space
model where free-text queries and documents are objects of the same nature, we suggest that query
be expressed in the same form as XML documents, so as to compare “apples and apples”. We have
presented an extension of the vector space model that integrates a measure of similarity between
XML paths, and have defined a novel ranking mechanism derived from this model. We have
embodied this model in our state-of-the-art information retrieval system, Juru. While the informal
experiments we have conducted are encouraging, we are now waiting for the INEX evaluation to
validate our approach.

Figure 4: Example of search results for an XML fragment query derived from INEX

Figure 5: A more complex XML fragment query

Acknowledgements
We are grateful to the XMLFS team, Benny Mandler, Naama Kraus, Alain Azagury and Michael
Factor, for adding the original lexicon encoding of XML paths to Juru and for fruitful brainstorming
on XML stores. Matan Mandelbrod deserves special thanks for implementing a significant part of
the XML support in Juru. Finally, we thank Dafna Sheinwald for her last minute reviewing.

References

1. The XML industry portal, http://www.xml.org
2. XQuery – The XML Query language, http://www.w3.org/TR/2002/WD-xquery-20020430
3. N. Fuhr and K. GrossJohann, “XIRQL: A Query Language for Information Retrieval in

XML Documents”. In Proceedings of SIGIR’2001, New Orleans, LA, 2001
4. ACM SIGIR’2000 Workshop on XML and IR, SIGIR Forum, 2000
5. R. Baeza-Yates, D. Carmel, Y. Maarek and A. Soffer (eds), JASIST Special Issue on XML

and Information Retrieval, 53: 6, 2002
6. D. Chamberlin, P. Fankhauser, M. Marchiori and J. Robie, XML Query Use Cases, W3C

Working Draft 20 Dec 2001, http://www.w3.org/TR/2001/WD-xmlquery-use-cases-
20011220

7. The Initiative for the Evaluation of XML retrieval, http://qmir.dcs.qmw.ac.uk/INEX/
8. D. Carmel, E. Amitay, M. Herscovici, Y. Maarek, Y. Petruschka and A. Soffer, "Juru at

TREC 10 - Experiments with Index Pruning", In Proceedings of NIST TREC 10, Nov 2001.
9. A. Azagury, M. Factor, Y. Maarek and B. Mandler, “A Novel Navigation Paradigm for

XML Repositories”, pp 515-525 in [4]
10. A. Azagury, M. Factor, N. Kraus, I. Loy and B. Mandler, “Index Infrastructure for an XML

repository”, in the ACM SIGIR 2002 XML and IR workshop notes, Tampere, Finland, Aug
2002.

11. D. S. Hirschberg, “A Linear Space Algorithm for Computing Maximal Common
Subsequences”, Communications of the ACM , 18: 6, pp 341--343 (1975).

12. E. W. Myers, “Incremental Alignment Algorithms and their Applications”, Tech. Rep. 86-
22, Dept. of Computer Science, U. of Arizona, (1986).

