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Abstract

The “Common Substring Alignment” problem is defined as follows. The input consists of a
set, of strings S1,55 ... S., with a common substring appearing at least once in each of them, and
a target string T'. The goal is to compute similarity of all strings S; with T, without computing
the part of the common substring over and over again.

In this paper we consider the Common Substring Alignment problem for the LCS (Longest
Common Subsequence) similarity metric. Our algorithm gains its efficiency by exploiting the
sparsity inherent to the LCS problem. Let Y be the common substring, n be the size of the
compared sequences, L, be the length of the LCS of T and Y, denoted |LCS[T,Y]|, and L be
max{|LCS[T, S;]|}. Our algorithm consists of an O(nL,) time encoding stage that is executed
once per common substring, and an O(L) time alignment stage that is executed once for each
appearance of the common substring in each source string. The additional running time depends
only on the length of the parts of the strings that are not in any common substring.

1 Introduction

The problem of comparing two sequences A and B to determine their similarity is one of the
fundamental problems in pattern matching. One of the basic forms of the problem is to determine
the longest common subsequence (LCS) of A and B. The LCS string comparison metric measures
the subsequence of maximal length common to both sequences [1]. Longest Common Subsequences
have many applications, including sequence comparison in molecular biology as well as the widely
used diff file comparison program. The LCS problem can be solved in O(mn) time, where m and
n are the lengths of strings A and B, using dynamic programming [8]. The dynamic programming
creates an m x n “DP Table” that contains in its (4,j) entry the LCS of the prefix of A of size 4
and the prefix of B of size j.
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More efficient LCS algorithms, which are based on the observation that the LCS solution space
is highly redundant, try to limit the computation only to those entries of the DP Table which
convey essential information, and exploit in various ways the sparsity inherent to the LCS problem.
Sparsity allows us to relate algorithmic performances to parameters other than the lengths of the
input strings. Most LCS algorithms that exploit sparsity have their natural predecessors in either
Hirshberg [8] or Hunt-Szymanski [9].

All Sparse LCS algorithms are preceded by an O(nlog |%Z|) preprocessing [1]. The Hirshberg al-
gorithm uses L = |LCS[A, B]| as a parameter, and achieves an O(nL) complexity. The Hunt-
Szymanski algorithm utilizes as parameter the number of matches between A and B, denoted r,
and achieves an O(rlogn) complexity. Apostolico and Guerra [2] achieve an O(L - m - min(log |X|,
log m, log(2n/m)) algorithm, where m < n, and another O(m logn-+dlog(nm/d)) algorithm, where
d < r is the number of dominant matches (as defined by Hirschberg [8]). This algorithm can also
be implemented in time O(d loglog min(d,nm/d)) [6]. Note that in the worst case both d and r are
Q(n?), while L is always bounded by n.

The Common Substring Alignment Problem is defined in [12] as follows: The input consists of a set
of one or more strings 51,52 ... 5. and a target string 7. It is assumed that a common substring Y
appears in all strings S; at least once. Namely, each S; can be decomposed in at least one way to
S; = B;Y F;. (See Figure 1.) The goal is to compute the similarity of all strings S; with T, without
computing the part of Y over and over again. It is assumed that the locations of the common
subsequence Y in each source sequence S; are known. However, the part of the target T' with which
Y aligns, may vary according to each B; and F; combination.

T = ”BCBADBDCD” Y =  ”BCBD”

S = ”BC BCBD C” B = UBC Ro=

S; = "EBCBDDBCBDA” By, = ’E Fu =  7"DBCBDA”
By = UEBCBDD” Fy = 7A”

Figure 1: An example of two different source strings Sy, S2 sharing a common substring Y, and
a target 7.

More generally, the common substring Y could be shared by different source strings competing
over similarity with a common target, or could appear repeatedly in the same source string. Also,
in a given application, we could of course be dealing with more than one repeated or shared sub-
component. (See Figure 1.)

Common Substring Alignment algorithms are usually composed of a pre-processing stage that
depends on data availability, an encoding stage and an alignment stage. During the encoding stage,
a data structure is constructed which encodes the comparison of Y with 7. Then, during the
alignment stage, for each comparison of a source S; with 7', the pre-compiled data structure is used
to speed up the part of aligning each appearance of the common substring Y.

In most of the applications for which Common Substring Alignment is intended, the source sequence
database is prepared off-line, while the target can be viewed as an “unknown” sequence which is
received online. The source strings can be pre-processed off-line and parsed into their optimal
common substring representation. Therefore, we know well beforehand where, in each S;, Y begins
and ends. However, the comparison of Y and T' can not be computed until the target is received.
Therefore, the encoding stage, as well as the alignment stage, are both online stages.



Even though both stages are online, they do not bear an equal weight on the time complexity of
the algorithm. The efficiency gain is based on the fact that the encoding stage is executed only
once per target, and then the encoding results are used, during the alignment stage, to speed up
the alignment of each appearance of the common substring in any of the source strings.

To simplify notation we assume from now on that all compared strings are of size n. Our results
can be extended easily to the case in which the strings are of different length. We use L to denote
max{|LCS|T, S;]|}, and L, to denote |LCS[T,Y]|. (Note that L, < |Y|, Ly, < L, and L < n.)

Results. In this paper we address the following challenge: can a more efficient common substring
alignment algorithm, which exploits the sparsity inherent to the LCS metric, be designed for the
LCS metric. We show how to exploit sparsity, by replacing the traditional matrix which is used to
encode the comparison of Y and 7', with a smaller matrix. We show that this smaller matrix can
be computed using Myers’ Consecutive Suffix Alignments algorithm [14]. We also prove that this
smaller matrix preserves the Total Monotonicity condition, thus enabling efficient adaptation of a
matrix searching algorithm of Aggarwal et al. [3].

Our algorithm consists of an O(nL,) encoding stage, and an O(L) alignment stage. When the
problem is sparse (L, << |Y|, L << n), our time bounds are better than those of previous
algorithms. Even when the data is dense, our solution for the problem is no worse than the best-
known algorithms.

The first Common Substring Alignment algorithm for the LCS metric was given in [11]. It presents
an O(n? + n|Y]) encoding stage, and an O(n) alignment stage. In [12] a Common Substring
Alignment algorithm for the LCS, Edit Distance and more extended metrics is given. This algorithm
consists of an O(n|Y|) encoding stage, and an O(n) alignment stage.

The remainder of this paper is organized as follows. Section 2 contains Common Substring Align-
ment preliminaries. The new algorithm is described in section 3. Section 4 contains an analysis
and assertion of some of the properties of the new data representation which allow for the efficiency
gain. Conclusions and open problems are given in Section 5.

2 Common Substring Alignment Preliminaries

In the literature the DP Table used for computing the alignment is also viewed as a directed acyclic
graph (DAG), called the Dynamic Programming (DP) Graph [7]. The DP Graph for S and T,
contains (|S|+1)(|T|+1) vertices, each labeled with a distinct pair (z,w)(0 < z < |S|,0 < w < |T).
The vertices are organized in a matrix of (|S| + 1) rows and (|T'| + 1) columns. (See Figure 2.)

When using the LCS metric, the DP Graph contains a directed edge with weight zero from each
vertex (z,w) to each of the vertices (z,w+1), (x4 1,w). It also contains a directed edge from each
vertex (z,w) to vertex (z + 1,w + 1). This diagonal edge has weight one if S[z + 1] = T[w + 1],
and zero otherwise. Maximal weight paths in the Dynamic Programming graph represent optimal
alignments of S and 7. The Dynamic Programming algorithm will set the value of vertex (3, j)
in the graph to the total weight of the highest scoring path which originates in vertex [0, 0] of the
graph and ends in vertex [i, j].

The Dynamic Programming Graph used for computing the similarity between a source string
S; = B;Y F; and a target string T can be viewed as a concatenation of 3 sub-graphs, where the
first graph represents the similarity between B; and T, the second graph represents the similarity
between Y and T', and the third graph represents the similarity between F; and T'.
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Figure 2: The LCS Dynamic Programming Graph for the comparison of §; = "BCBCBDC”
with T = "BCBADBCDC”. The highlighted path in the graph corresponds to the common
subsequence " BCBBDC”.

In this partitioned solution, the weights of the vertices in the last row of the first graph serve as
input to initialize the weights of the vertices in the first row of the second graph. The weights of
the last row of the second graph can be used to initialize the first row of the third graph.

The motivation for breaking the solution into 3 sub-graphs is that the second sub-graph, which
represents the comparison of Y with 7', is identical in each of its appearances in all DP graphs
comparing any of the strings §; with 7. More specifically, both the structure and the weights of
the edges of all DP sub-graphs comparing Y with T' are identical, but the weights to be assigned
to the vertices during the LCS computation may vary according to the prefix B; which is specific
to the source string. Therefore, an initial investment in the learning of this graph as an encoding
stage, and in its representation in a more informative data structure, may pay off later on.

For a string A of length n and for 1 < u < z < n, let A? denote the substring of A from index
u (inclusive) up to index z (inclusive). We define the following notations with respect to the
Dynamic Programming Graph used for computing the LCS of S; = B;YF; and T. Let G denote
the second sub-graph which represents the comparison of Y with T'. Let I denote the first row
of G. Namely, I[j] = |LCS[T{,B;]|, for j = 1,...,n. Let O denote the last row of G. Namely,
O[j] = |LCS[T?,B;Y]|, for j =1,...,n

Our solution will focus on the work necessary for an appearance of a given common substring:
Given a target string T', a source substring Y and an input row I, compute the output row O.

As described above the online work for each common substring consists of two stages.

1. Encoding Stage: Study the structure of G and represent it in an efficient way.



2. Alignment Stage: Given I and the encoding of G, constructed in the previous stage, compute

0.

Observe that, due to the monotonicity and unit-step properties of LCS, both I and O are monotone

staircases with at most L + 1 unit steps. This enables the following definitions of the vectors PI
and PO.

Definition 1 For k = 0,...,L, the entry PI[k] contains the smallest index in the input row I
whose value is k, if such exists.

Definition 2 For k = 0,..., L, the entry PO[k] contains the smallest indez in the output row O
whose value is k, if such exists.

We claim that PI is sufficient for the computation of PO. To see this consider some k € [0..L]
and assume that 4; = PI[k] is defined. Let i3 be PI[k + 1] if it is defined or n + 1 otherwise. Note
that for any index 4o, where iy < iy < i3, I[i] + |[LCS[T} |, Y]| > I[io] + |LCS[T},,,,Y]|, for
any j € [i2..n]. This is true since I[iz] = I[i1] = k and |LCS[TZ{+1,Y]| > |LCS[TZ-2+1,Y]| for any
i1 < ig < i3. (The second inequality follows since the concatenation of prefix TZZI2 .1 to the string

TZJ2 41 can either increase the size of its common subsequence with Y or leave it unchanged.)

3 The Algorithm

The objective of the algorithm is to compute PO[k], for k = 1,..., L given the vector PI. (Note
that PO[0] = 0.) Recall that PO[k] is the smallest index of an entry in O with a value of k. In
terms of optimal paths in the alignment graph, this means that PO[k] is the index of the leftmost
vertex in the output border of G to end a path of weight k, which originates in vertex (0,0) of
the alignment graph. Note that such a path could enter G through any one of its input border
vertices whose value is < k. However, in section 2 we have shown that the PI indices are sufficient
for representing all the potential entry points of I, and therefore only the values PI[0... k] will be
considered as relevant representative entry point indices for the sought k-path.

Now, consider any path of total weight k, which originates in vertex (0,0) of the alignment graph,
enters G through a given input border vertex PI|r|, and ends in some vertex j on the output border
of G. This path could be decomposed into two parts: the sub-path connecting vertex (0,0) with the
selected input border entry PI[r], followed by the sub-path from the selected input border entry
to vertex j on the output border. The weight of the sub-path from vertex (0,0) to the selected
input border entry is the value I[PI[r]] = r. The weight of the sub-path from vertex PI[r] on the
input border to vertex j on the output border is |[LCS[T}, 4+ Y]|. By definition, the sum of the
weights of these two sub-paths, whose concatenation gives the total k-path, must be k.

Now recall that among all such potential k-paths, which could enter G through any of the PI[r],
r = 0...k input border vertices, we are actually interested in the ones which are optimal in the
sense that they end in the leftmost possible output border vertex. Therefore, the value of PO[k],
for 1 < k < L, is computed as follows.

k .
PO[K] = min{j | r+ |LCS[Thy,,, Y] = k) 1)

+10

We show how to obtain PO in two stages.



1. The encoding stage which is executed only once for each common substring Y, in which we
compute min{j | |[LCS[T/,,,Y]| = k} for each pair (i,k), i =0...nand k =1...L,.

2. The alignment stage in which we compute PO, using Equation 1, given PI and the values
computed in the encoding stage.

3.1 The Encoding Stage

In the encoding stage we compute the n x L, table S, where S[i, k] = min{j | |LCS[1}J'+1, Y| =k},
if such an index exists. In other words, S[i, k] contains the smallest index of a vertex in the last row
of the DP Graph defined by the LCS of T" and Y that can be reached from vertex ¢ in the first row
of this graph via a path of weight k. We observe that Myers’ Consecutive Alignments algorithm
[14] can be used to construct the table S.

Complexity. Given two strings Y and T over a constant alphabet Myers [14] constructs the table
S for the comparison of Y versus 7' in O(nL,) time and space.

3.2 The Alignment Stage

During each execution of the alignment stage the objective is to compute PO from PI, using
the table S computed in the encoding stage. Recall that PO[0] = 0 and for £ > 0, PO[k] =
minf_ {S[PI[r],k — 7]}

Note that when the alignment stage is executed the L values of the PI for this specific alignment
stage are known, and S has already been computed. It follows that the representation of the
competing PI’s can be reduced to the (L+1) x L matrix OUT in which OUTr, k] = S[PI|r],k—7],
for1<k<Land0<r<k.

Note that in the DP Graph of S; and T the entry OUT[r, k] is the smallest index of a vertex in row
O that is an endpoint of a path of weight &k that starts in vertex (0,0), and goes through vertex
PI[r] in row 1.

Clearly, for k € [1..L], PO[k] is the minimum of the k-th column in the above OUT matrix.
In Section 4 we prove that OUT is convex totally monotone. Hence, a recursive algorithm by

Aggarwal et al. [3], nicknamed SM AW K in the literature, can be used to compute the column
minima of OUT.

Complexity. Given S and PI, computing an element of OUT requires O(1) time and space. The
SMAW K algorithm computes the column minima of the (L + 1) x L totally monotone matrix
OUT in O(L) time and space, by querying only O(L) entries of the array. Hence, PO is computed
during the alignment stage in O(L) time and space.

4 OUT as a Totally Monotone Rectangular Matrix

Definition 3 A matriz M[0...m,0...n] is totally monotone if either condition 1 or 2 below
holds for all a,b=0...m; ¢,d=0...n:

1. convex condition: MfJa,c] > M[b,c] = M]Ja,d] > MIb,d] for all a < b and ¢ < d.

2. concave condition: Ma,c] < M[b,c] = M]a,d] < M[b,d] for all a < b and ¢ < d.



In this section we prove that OUT can be safely transformed into a full, rectangular, convex totally
monotone matrix, as needed for the implementation of SM AW K algorithm in the alignment stage.
We start by noting that, originally, OUT is not a full, rectangular matrix, since some its entries
are undefined. Recall that OUTr, k] is defined as S[PI[r],k — r]. Since I is a monotone staircase,
PI[r] is defined for 0 < r < Ly, where L; denotes |LCS[T, B;]|, and undefined for » > L;. We
consider only the first L; rows of OUT and thus we may assume that PI[r] is always defined. It
follows that an entry OUT[r, k] is undefined whenever the entry S[PI[r],k — r] is undefined.

Definition 4 Let k., for 0 < r < Ly, denote the greatest column index of an entry in row r of
OUT whose value is defined.

Lemma 1 Each row in OUT consists of a (possibly empty) span of undefined entries, called the
undefined prefiz, followed by a span of defined entries, and by a (possibly empty) span of undefined
entries, called the undefined suffixz. For a given row r of OUT, the span of defined entries starts in
entry OUT[r,r| and ends in some entry OUT[r, k;] , such that r < k, < L.

Proof: Suppose that for ¢ < e, both OUT[r,c] and OUT[r,e] are defined. From the definition
of the table S it follows that all the entries S[PI[r],d — r], for ¢ < d < e are also defined and
thus also OUT[r,d]. This means that the defined entries in each row of OUT form a consecutive
interval. Following the definition of the S and OUT tables, S[PI[r],0] is always defined and
therefore OUT[r,r] = S[PI[r],r — r] is always defined. S[PI[r],—1], on the other hand, is never
defined and therefore OUT[r,r — 1] is never defined. Thus we conclude that the span of consecutive
defined entries in row r of OUT begins in OUT[r,r| and ends in OUT[r, k,]. |

Our next goal is to prove that the defined entries of OUT follow the convex total monotonicity
property. Later, we show how to complement the undefined entries of OUT, without changing its
column minima, and still maintain this property.

Lemma 2 For any a,b, ¢, such that a < b and all four entries: OUTa,c], OUT[b,c|, OUT[a,c+1],
and OUT[b,c+ 1] are defined, if OUT|a,c] > OUTIb,c], then OUT[a,c+ 1] > OUT[b,c + 1].

Proof: The proof is based on a crossing paths contradiction [4, 10, 13, 15].

We consider two paths in the DP Graph of B;Y and T. Let path A, denote an optimal path
(of weight c+1) connecting vertex (0,0) of the graph with vertex OUT[a,c + 1] of O and going
through vertex PI[a] of I. Note that by our definition such a path always exists. Similarly, let
path B, denote an optimal path connecting vertex (0,0) of the graph with vertex OUT'[b,c| of
O and going through vertex PI[b] of I. Figure 3 shows paths B, and A.;;. Note that, since
OUTI[b,c] < OUT]a,c] < OUT[a,c+ 1], the two paths B, and A.;1 must intersect at some column
of the DP Graph before or at column OUT[b,c|. Let X and Y be the prefixes of A.y1 and B, up
to the intersection point, and let W and Z be their suffixes from this intersection point.

There are two cases to be addressed, depending on the outcome of the comparison of the weights

of X and Y, denoted |X| and |Y]|.

Case 1. |X| < |Y|. Then |Y|+|W| > ¢+ 1. By monotonicity of LCS this implies that OUT[a, c+
1] > 0oUT[b,c+ 1].

Case 2. |X| > |Y|. Then |X| + |Z| > ¢. By monotonicity of LCS this implies that OUTa, c] <
OUTIb, ], in contradiction to the assumption of the proof. J
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Figure 3: Optimal paths which must cross.

Note that the two assertions of Lemmas 1 and 2 lead, by definition, to the following conclusion.
Conclusion 1 The defined entries of OUT follow the convex total monotonicity property.

We now turn to handle the undefined entries of OUT. By Lemma, 1 we know that the span of defined
entries in a given row r starts in OQUT[r,r| and ends in OQUT[r,k,]. This implies, by definition,
that the undefined prefix of row r consists of its first 7 — 1 entries, and thus the undefined prefixes
form a lower left triangle in QUT.

The next Lemma assists in defining the shape formed by the undefined suffixes of the rows of OUT.

Lemma 3 For any two rows a,b of OUT, where a < b, if kg > ky, then OUT[a,f] < OUTIb, ],
for all the defined elements in rows a and b of OUT.

Proof: Since k, > ky, it follows that OUT[a, k], OUT[b, ky] and OUT[a, ky, + 1] are defined, yet
OUTIb, ky + 1] is undefined. Note that for every index b < j < k; both OUTb, j] and OUTa, j]
are defined. Suppose there was some index b < j < k;, such that OUTa, j] > OUTb, j].

We consider two paths in the DP Graph of B;Y and T. Let path Ay, 1 denote an optimal path
(of weight ky+1) connecting vertex (0,0) of the graph with vertex OUT|[a, ky + 1] of O and going
through vertex PI[a] of I. Note that by our definition such a path always exists. Similarly, let
path B; denote an optimal path (of weight j) connecting vertex (0,0) of the graph with vertex
OUTYb, j] of O and going through vertex PI[b] of I.

Similarly to the proof of Lemma 2, one can show that these two paths cross and that since
OUTla,j] > OUT[b,j] there must be a path of weight at least k; + 1 that originates in vertex
(0,0), ends in O and goes through vertex PI[b] of I, in contradiction to the assumption that
OUTb, ky+ 1] is undefined. We conclude that, for all the defined elements in rows a and b of OUT,
OUTa,j] < OUTb,j]. §

Lemma 3 implies that, for any row r of QUT, if there exists another row 7' in QUT, such that
r" < r and k, < k.., then row r can be skipped in the search for column minima. After removing
all such rows we are guaranteed that the undefined suffixes form an upper right triangle in OUT.

The undefined entries of OUT can be complemented in constant time each, similarly to the solution



described in [5], as follows.

1 Lower Left Triangle: These entries can be complemented by setting the value of any OUT[r, j]
in the missing lower-left triangle to (n + 7 + 1).

2 Upper Right Triangle: The value of any undefined entry OUT]r, j] in this triangle can be set
to oco.

In the next lemma we prove that OUT can be safely converted into a full, rectangular, convex
totally monotone matrix.

Lemma 4 The OUT matriz can be transformed into a full, rectangular matriz that is totally
monotone, without changing its column minima.

Proof: We have shown (Conclusion 1) that the defined entries of OUT follow the convex total
monotonicity property. It remains to show that complementing the undefined entries of OUT, as
described above, preserves its column minima, and still maintains this property.

1 Lower Left Triangle: The greatest possible index value in OUT is n. Since r is always greater
than or equal to zero, the complemented values in the lower left triangle are lower-bounded
by (n + 1) and no new column minima are introduced. Also, for any complemented entry
OUTb,c| in the lower left triangle, OUTa,c] < OUT[b,¢] for all a < b, and therefore the
convex total monotonicity condition holds.

2 Upper Right Triangle: All scores in OUT are finite. Therefore, no new column minima, are
introduced by the re-defined entries.

Due to the upper right corner triangular shape of this co-patched area, for any two rows a, b,
where a < b, if OUT'[b, ¢] = o0, then surely OUT[a,c] = 0. Let d be the smallest index such
that OUT[a,d] = co. It follows that OUT[a,e] > OUTIb, €] for all e > d, and the convex total
monotonicity property is preserved. |

Time Complexity We show that the overhead associated with the marking of the undefined
elements in QUT, as well as the removal of redundant rows in OUT in order to obtain the crisp
undefined upper right triangle, does not slow down the time complexity of the suggested Common
Substring Alignment algorithm.

1. Encoding Stage. During the encoding stage, LCS[T}",,,Y], forr =0,...,n—1 is computed
and stored. This information will be used later, during the alignment stage, to mark the
beginning of the undefined suffix in each row. LCS[T} |,Y] corresponds to the greatest
column index of a defined entry in row r of S. Therefore, all n values of LCS[T}, {,Y], for
r =0,...,n — 1, can be queried from the constructed S table without changing the original
O(nL,) complexity of the encoding stage algorithm.

2. Alignment Stage.

(a) Marking the Defined and Undefined Intervals in Each Row of OUT. Given
a row index 7 and the value LCS[T}, |,Y] which was computed in the encoding stage,
the undefined prefix and suffix of row r of OUT can each be identified and marked in a

constant time. Since there are O(L) rows in OUT, this work amounts to an additional
O(L) time.



5

(b) Removing the Redundant Rows to Create an Upper Right Triangle. Since
PI is available in the beginning of the alignment stage, the O(L) representative rows
of OUT can be scanned in increasing order as a first step in the alignment stage, prior
to the activation of SMAW K, and the rows which become redundant identified and
removed.

Altogether, this additional O(L) work does not change the original O(L) time complexity of
the alignment stage.

Conclusions and Open Problems

The Sparse LCS Common Substring Alignment algorithm described in this paper consists of an
O(nL,) time encoding stage and an O(L) time alignment stage. It is intended for those applications
where the source strings contain shared and repeated substrings. Note that we just leverage on
the appearance of common substrings in the source strings. It is an open problem whether a more
efficient algorithm exists when the target string contains encoded repetitions as well as the source
strings.

Another remaining open challenge is to try to extend the solutions presented in this paper to more
general metrics, such as Edit Distance.
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