Inplace 2D Matching in Compressed Images

Amihood Amir* Gad M. Landau T Dina Sokol*

Abstract

The compressed matching problem, defined in [1] is the prob-
lem of finding all occurrences of a pattern in a compressed
text. In this paper we discuss the 2-dimensional compressed
matching problem in Lempel-Ziv compressed images. Given
a pattern of (uncompressed) size m x m, and a text of (un-
compressed) size n X n, both in 2D-LZ compressed form, our
algorithm finds all occurrences of P in T'. The algorithm is
strongly inplace, that is, the amount of extra space used is
proportional to the best possible compression of a pattern
of size m>. The best compression that the 2D-LZ technique
can obtain for a file of size m? is O(m). The time for per-
forming the search is O(n?) and the preprocessing time is
Oo(m?).
be used for any 2D compression which can be sequentially

Our algorithm is general in the sense that it can
decompressed in small space.

1 Introduction.

The compressed matching problem, motivated by the
vast increase of stored compressed data, is the problem
of finding all occurrences of a pattern in a compressed
text. Since its definition in [1], many results have
been achieved in the area of compressed matching.
Most of the works have been in 1D texts (e.g. [9,
12, 11]) with a few addressing the 2D version. The
2D algorithms work with run-length compression [6, 7]
and hierarchical compression [8]. In this paper we

~ FAT&T Labs — Research, Shannon Laboratory, E278, 180
Park Avenue, Florham Park, NJ 07932-0971, (973)360-8120;
aamihood@research.att.com; Partially supported by ISF grant
282/01. Part of this work was done when the author was at
Georgia Tech, College of Computing and supported by NSF grant
CCR-01-04494.

fDepartment of Computer Science, Haifa University, Haifa
31905, Israel, phone: (972-4) 824-0103, FAX: (972-4) 824-9331;
Department of Computer and Information Science, Polytechnic
University, Six MetroTech Center, Brooklyn, NY 11201-3840;
email: landau@poly.edu; partially supported by NSF grant CCR-
0104307, by the Israel Science Foundation grants 173/98 and
282/01, by the FIRST Foundation of the Israel Academy of
Science and Humanities, and by IBM Faculty Partnership Award.

tBar-Tlan University, 52900 Ramat-Gan, Israel, (972-3)531-
8407; sokold@cs.biu.ac.il; Partially supported by an Israel
Ministry of Industry and Commerce Magnet grant (KITE) and
an ATéT travel grant.

pioneer 2D compressed matching in Lempel-Ziv! (LZ78)
compressed images [18, 14]. This problem is of both
theoretical and practical interest. From a theoretical
viewpoint, it has been an open challenge to extend
compressed matching to Lempel-Ziv in 2-dimensions. In
practice, many images are compressed using variations
of the Lempel-Ziv compression technique. For example,
CompuServe’s GIF standard, widely used on the World-
Wide Web, uses LZW (a variation of LZ78) on the image
linearized row-by-row.

The goal of compressed matching has gener-
ally been to perform pattern matching in time
O(|compress(T)|) where compress(T) refers to the
compressed text. Using a character-based compression
such as Lempel-Ziv, this goal often has little practical
value. For a typical file, the compression ratio is a small
constant, yielding O(|compress(T)|) = O(|T|). How-
ever, as discussed previously in [3, 7, 17], when dealing
with compression the criterion of minimizing the extra
space is perhaps more important because of various con-
siderations. These include, among others, the efficiency
of doing work in main memory — where the file fits in
its entirety but auxilliary data structures proportional
to the file size will not fit, applications requiring search
in local processors with small memory (e.g. in wire-
less phones) streaming large amounts of data, and local
searches on the net. This has led the pattern matching
community to consider a paradigm of compressed search
with a small amount of additional auxilliary memory.
A compressed matching with inputs compress(P) and
compress(T'), has been defined to be inplace if the ex-
tra space used, besides the input pattern and text, is
O(|compress(P)]). Since we encounter the same diffi-
culty with the constant size compression ratio, we define
a stronger space constraint.

DEFINITION 1.1. Let P be a pattern of size m, and
let m' be the optimal compression over all strings of
length m using the given compression technique. A
compressed matching algorithm with input pattern P is

TThe 2D compression defined by Lempel and Ziv in [14] uses
the Hilbert Curve to linearize the image, and then applies the 1D
LZ78 algorithm. We use the row-by-row linearization, since for
practical purposes the Hilbert Curve does not achieve a better
compression.

called strongly inplace if the amount of extra space used
is proportional to m/'.

In the current model, our goal is to develop a
strongly inplace compressed matching algorithm, while
maintaining search time O(|T|). The idea of minimizing
the extra space used while relaxing the time constraint
originates in [3]. The point is that the Lempel-Ziv com-
pression works by compressing repeated substrings in
the text. Pattern matching in LZ compressed texts can
exploit this same repetition by storing known informa-
tion about previous occurrences of a substring. How-
ever, if we disallow the storage space, then it seems im-
possible to obtain the time bound of O(|compress(T)|).

In this paper we present a strongly inplace algo-
rithm for pattern matching in 2-dimensional compressed
texts where the compression technique allows sequen-
tial decompression is small space. Specifically, our algo-
rithm uses O(m) space for a pattern of size m?. Using
e.g., the 2D-LZ compression, the best possible compres-
sion for a string of length m?2 is m. The time complexity
of the algorithm is O(m3 + n?).

The paper is organized as follows. In the following
section we define the problem of both 1D and 2D LZ78
compressed matching, and extract the feature of LZ78
that is exploited by our algorithm. §3 contains some
preliminary definitions and an outline of the algorithm’s
framework. The algorithm is presented in §4 and §5.

2 Problem Definition.

We describe the LZ78 compression technique in 1 and
2-dimensions. The key property of LZ78 is the ability
to perform decompression using constant space in time
linear in the uncompressed string. We describe this
operation in this section, and in the remainder of the
paper we do not use any additional properties of the
LZ78 technique.

2.1 LZ78 in 1-Dimension. The LZ78 [18] compres-
sion technique is an adaptive dictionary based compres-

sion scheme. Given a string T = s1,...,8, over an
alphabet X, the algorithm parses the string from left
to right, creating a sequence of pairs (i1,¢1), ..., (iz,¢z)

called the compressed string. At the start, the com-
pressed string, as well as the dictionary is empty. At
each step a pair (7,c¢) is appended to the compressed
string and a new codeword is added to the dictionary. i
represents the longest dictionary codeword that matches
a prefix of the still uncompressed string (0 if no such
word exists). ¢ is the character which follows that pre-
fix. The new codeword that is added to the dictionary is
the concatenation of word number i and the character c.
We illustrate the compression in the following example.

Ezample. We show how to compress the string ab-
bababbb.

Step number: 1 2 3 4 5
Compressed String: || (0,a) | (0,b) | (2,a) | (3,b) | (2,b)
Codewords: a b ba bab bb

OBSERVATION 2.1. The ith element in the compressed
string creates the ith codeword in the dictionary.

Key Operation: Decompression is done in
constant space and linear time. Using Observation
2.1, we can perform the key operation on the LZ78
technique. Suppose we are uncompressing a string 7'
of length n and the compressed string has length z.
The decompression works from right to left. We begin
with the last element in the compressed string (i,,c;).
We set T[n] = c¢,. To begin the decompression of
codeword i, we jump to location i, of the compressed
string and set T'[n — 1] = ¢;,. This continues until we
reach an element whose codeword is 0. We then return
to location z — 1 of the compressed string. Referring
back to the example above, the decompression of the
string abbababbb works as follows. We set T[9] = b
since the character in position 5 of the compressed string
is (2,b). Then, we decompress codeword number 2 by
accessing position 2 of the compressed string and setting
T[8] = b. We return to compressed position number
4 since the codeword at position 2 is a 0, and we set
T[7] = b. This continues until all the codewords have
been decompressed.

Complexity: The space used is O(1) since only
two pointers into the compressed string are needed, one
to the compressed character that is being decompressed
and one to follow the jumps. Since for each jump
a single character is uncompressed the time for the
decompression is O(n).

Remark: The algorithm of Gasieniec et al [15]
called Sequential Sampling is a constant space pattern
matching algorithm that is sequential. Using our de-
compression algorithm combined with the Sequential
Sampling Algorithm we get a compressed matching algo-
rithm for the 1D LZ78 problem which works in constant
space and linear time (in the uncompressed text).

2.2 LZ78 in 2 Dimensions.

DEFINITION 2.1. The 2D-LZ Compression is defined as
follows. Given an image T[1...n,1...n], we create
a string Tyin[l...n%] by concatenating all rows of T.
Compressing Ty;, with 1D-LZ78 yields the 2D-LZ com-
pression of the image T .

Note that the 2D-LZ definition slightly differs from
the definition in [14]. In [14] Lempel and Ziv defined

their 2D compression technique using the Hilbert Curve
to linearize the image followed by the 1D-LZ78. Al-
though they theoretically prove that the Hilbert Curve
is optimal, it seems that this is often not the case in
practice. We have tested numerous images and the re-
sults show that there is no significant difference between
the row-by-row order and the Hilbert Curve. Further-
more, in [16] it is proven that in general, for lossless com-
pression of real images, the row-by-row order will yield
a better compression than the Hilbert Curve. It should
be noted that the GIF standard also used a row-by-
row linearization followed by LZW compression, which
is very similar to the LZ78.

We also point out that our definition differs slightly
from the definition of a 2D run-length compressed
text [6]. There, the 2D compression is defined as the
concatenation of the compressed rows, while we first
concatenate the rows and compress the concatenation
of the rows. This distinction is particularly important
for LZ compressed images, where it is crucial to be able
to reference recurring sequences among different rows.

We define the Two-Dimensional LZ Com-
pressed Matching Problem as follows:
Input: Text array T of size n x n, and pattern array P
of size m X m both in 2D-LZ compressed form.
Output: All locations in T of occurrences of P. For-
mally, the output is the set of locations (i, j) such that
Ti+k,j+1=Plk+1,1+1] k1=0...m—1.

In this paper we present an algorithm that solves
the 2D-LZ Compressed Matching Problem. Our algo-
rithm is strongly inplace since it uses O(m) space. The
best compression that LZ78 can achieve on a pattern
of length m? is O(m) [18]. The time complexity of the
algorithm is O(m3 + n?). We note that Gasieniec et al
[15] have a constant space algorithm for 2-dimensional
matching. However, this algorithm is not sequential,
and it is very complicated. As such, it cannot be ex-
tended to work with a compressed text.

3 Preliminaries.

3.1 Definitions.

DEFINITION 3.1. A string p is primitive if there is no
prefiz u of p for which 3k > 2 such that p = u*.

DEFINITION 3.2. A string p is periodic in u if p = u'u®

where u' is a suffiz of u, u is primitive, and k > 2.

LEMMA 3.1. A periodic string p can be expressed as
u'u® for one unique primitive u.

We refer to u as “the period” of p, and u can refer
to both the string u and the period size |u].

DEFINITION 3.3. A string u is a cyclic rotation of a
string v if u = xy and v = yx for some prefix x and
suffix y of u. The phase of v in relation to u is |y|.

3.2 Framework. A known technique used for min-
imizing space is to work with small overlapping text
blocks of size 2m x 2m. If O(m?) extra space were al-
lowed, then the 2D-LZ problem would be easily solved
by decompressing small text blocks, and performing any
known 2D pattern matching within each text block.
However, a strongly inplace algorithm allows only O(m)
extra space. The advantage of the algorithm presented
in this paper is that it uses only O(m) extra space.

Our algorithm works with overlapping squares of
the text each having uncompressed size 3m/2 x 3m/2.
The potential starts all lie in the upper-left m/2 x m/2
square. We mark the current block using 3m pointers,
3m/2 to the left edge of the block and 3m/2 to the
right edge. We begin with the bottom-right portion of
the text. By sequentially decompressing the bottom
3m/2 rows, without storing any information, we can
find the 3m pointers that mark the first block. To
move from one text block to another, we decompress
sequentially from right to left. When we reach the
left edge of the text we return to the right and move
upward by decompressing additional rows. Each row
of the text is decompressed at most three times. The
sequential decompression is done in time linear in the
uncompressed text and in constant space as described
in §2.1.

Algorithm 1: Marking text blocks

1. Mark 1st block

The pointer to the end of the compressed string is
the bottom-right corner of the 2D text. Decompress
3m /2 characters from right to left to mark the left
edge of the bottom row in the text block. Then,
sequentially decompress the bottom 3m/2 rows in the
text to get a pointer to the left and right ends of all
rows in the bottom-right block.

2. Move to next block on the left
Move the pointers m /2 logical columns to the left by
sequentially decompressing the 3m/2 rows from the
point of the current block.

3. Moving upwards
We always save the 2m pointers to the top m rows
of the rightmost block. To move up, we sequentially
decompress the next m/2 rows above the rightmost
block, finding the two pointers per row as in Step 1.

The algorithm for finding the pattern in the small text

block is presented in the following two sections. We
differentiate between two types of patterns. The first
class of patterns are patterns in which all rows are
periodic with period < m/4. The second class of
patterns consists of patterns that have at least one
row that is either non-periodic, or is periodic with
period > m/4. In the following section we describe the
algorithm for the first type of pattern, and in §5 we
describe the algorithm for the second type of pattern.

4 Patterns with All Rows Periodic.

The search for periodic patterns is difficult due to
the ability of many pattern occurrences to appear
in a small text block. The output itself may be
larger than the amount of extra space that we allow
ourselves. In previous works periodicity properties were
used to succinctly represent the pattern. In [2] three
types of 2D periodicity were defined: line, radiant and
lattice periodicity. However, in order to ascertain the
periodicity type, a witness table of size O(m?) must be
constructed [10]. Our algorithm deals only with the 1D
periodicity of each row, and thus can search for periodic
patterns using O(m) space.

4.1 Pattern Preprocessing. We use a novel varia-
tion of the naming technique to succinctly represent a
pattern whose rows are all periodic. We define an equiv-
alence relation Ry over the rows of P. Given two rows,
1,7, iR¢j iff the period of row i is a cyclic rotation of the
period of row j. The “name” of the equivalence class, /£,
is the lowest row in P whose period is a cyclic rotation
of the periods of ¢ and j.

We precompute the following information for each
row of P.

1. period size.
2. name.
3. phase (in relation to name).

To compute the period size of each row, we decom-
press one row at a time and use known techniques to
find the string period. One such technique would be to
construct the KMP automaton [13] of the string. The
failure link of the final state points to the pattern’s pe-
riod.

The naming of the rows of P is performed in
O(m?) time as follows. After decompressing row 1 and
determining its period, we search for row 1 in every
other row of P, separately. Every row i which has a
suffix of length > 3m/4 that matches a prefix of row 1
receives the name 1. We mark the position at which row
1 occurs as the phase of row i. The preprocessing of all
rows with name 1 is now complete. We continue with

the next row following row 1 that has not yet received
a name. Upon completion, each row has been named
according to the equivalence class of its period. We
create a 1D pattern consisting of a single column, using
the name of a row to represent the row. We construct
the KMP automaton for the new pattern in O(m) time
and space.

There is one more step in the pattern preprocessing
stage. The text scanning algorithm uses the periodicity
of the rows of P to indicate a partial 2d periodicity of
P. Specifically, as shown in Lemma 4.2, the distance be-
tween any two overlapping pattern occurrences within
the same row will be a multiple of the least common
multiple (LCM) of the periods of all rows of P. To
find these pattern occurrences it is necessary to incre-
mentally compute the LCM of the periods of the rows
of P. We precompute this information by building a
table LCM _table[l...m], where LC M _table[i] has the
value of the LCM of the periods of rows 1...¢. The
entry LC'M _table[i] is computed by taking the LCM of
LCM _table[i — 1] and the period of row i. The LCM
of two numbers z and y can be found by multiplying
z X y and dividing the product by the greatest common
divisor of z and y, which can be found in O(min(z,y))
time. Each value takes O(m) time to compute, thus the
overall time is O(m?) and the extra space is O(m).

4.2 Text Scanning. The text scanning stage has two
steps.

1. Run the KMP algorithm downwards in the text and
mark rows that contain potential starts.

2. Verify candidates separately for each row.

We can run the KMP algorithm downwards in the
text if we view the text as a l-column string in a
similar way that we have done with the pattern. When
testing whether a row in the text equals a name u, we
uncompress the entire row and search for a maximal
chain u*u' with length > m — |u|. If such a chain exists,
we search for a suffix of u to the left of the chain to
ensure maximality in both directions. If the length of
the resulting chain is > m then we mark the location as
a match. As in the pattern preprocessing, we label the
text row with the name, the phase, and the two ends of
its maximal chain. If no such chain exists, the location
is said to mismatch, and the KMP algorithm continues
accordingly. It remains to show that at most one name
can match a given text row.

LEMMA 4.1. At most 1 name can match a given text
row.

Proof. The proof is by contradiction. Assume that
two different names, v and v, match a given text

row. Since we are looking at pattern starts within an
m/2 x m/2 square, the two chains overlap with at least
m/2 characters. The period sizes of u and v are both
smaller than m/4 and thus at least two adjacent copies
of both u and v occur in the overlap. By Lemma 3.1 this
contradicts the fact that both v and v are primitive.

Complexity of Step 1: The KMP algorithm for
a string of length m runs in O(m) time and space. Each
“character comparison” costs O(m) time, but only one
is done at a time, and therefore O(m) space is used.
The total time is O(m?).

After step 1 completes, a 1D text remains, each row
labeled with a name, a phase, and left /right boundaries.
All candidates, or possible pattern starts, are in the rows
that are marked with occurrences of the 1D pattern. Let
u be the period of the first row of P. The candidates
in a given row begin at the leftmost occurrence of wu,
and then at jumps of multiples of |u|. We call this the
candidate list of row i and |u] is said to be the period of
the candidate list. Note that a candidate list is stored in
constant space. We verify each candidate list separately
in O(m) time.

To verify the candidate list in row i, we check all
rows j in the text, i < j < ¢ + m. For each row j,
we do the following three things. After all rows are
checked, the remaining candidates in the list are all
pattern occurrences.

1. Find the leftmost candidate in the list which has
the proper phase in row j. This is done by naively
checking each candidate in the list until one is
satisfied with the phase of row j.

2. Find the new period of the candidate list. The new
period is the least common multiple (LCM) of the
old period of the candidate list and the period of
row j. (This is proven in Lemma 4.2.)

3. Trim the right edge of the candidate list according
to the length of row j.

Complexity of Step 2: Finding the leftmost
candidate in a list (step 1) can cost O(m) for a given
candidate list and row. However, for a given candidate
list in row i, over all rows ¢ < j < ¢ + m no more than
O(m) work will be done. This is because each candidate
that is discarded is never checked again. There are at
most O(m) discarded candidates. And, for each row j at
most one candidate that remains alive is checked. The
new period of the list is found by retrieving the LCM
from the LC'M _table in constant time. The trimming
of the right edge of the list is also done in constant
time per row of P. Thus, the overall time complexity
for the verification of a candidate list is O(m). Since

there are at most O(m) different candidate lists, the
time complexity of the verification phase is O(m?).
A constant amount of extra space is needed for the
verification.

LEMMA 4.2. Consider a 2D pattern P in which all rows
of P are periodic and let u equal the LCM of the periods
of all rows of P. If a copy of the pattern were to be
placed upon itself at location (1,j) the overlap will not
conflict if and only if j is a multiple of u.

Proof. The proof is by induction on the rows of P.
For a 1D periodic string, it is trivially true that the
string can overlap itself at all multiples of its period.
We assume that for a pattern with & rows the LCM
of the rows gives the consistent locations. Given a
pattern with k£ + 1 rows, we let u be the LCM of the
first k£ rows. By the induction hypothesis, multiples
of u are the only consistent locations. Let v be the
period of the k + 1st row. The locations at which
the pattern can overlap itself will be the intersection
between the sets {u, 2u,3u, ...} and {v,2v,3v,...} (see
example below). The intersection equals the set of all
multiples of LCM(u, v).

Example. LCM(u,v) = 6. The pattern can overlap
itself without conflict at locations 6 and 12.

aaaaaa|aaaaaalaaaaaa
u=3 | abcabc |abcabc |abcabc
v=2| ababab |ababab|ababab

Algorithm 2: Patterns will all rows periodic
Begin Algorithm

Pattern Preprocessing;:

1. Perform naming on the rows of P.
2. Build the KMP automaton for the new 1-D pattern.

3. Build the LC M _table for P.

Text Scanning:

4. Run KMP downwards in the text viewing each text
row as a meta-character. Name each text row that
matches a pattern row with the same name as the
pattern row.

5. Verify each candidate list separately. Verification for
a candidate list is done by verifying the phase and the
length of every row in the pattern. For each row in

the pattern, the verification of the row modifies the
candidate list as follows:

(a) Find the leftmost candidate in the list that has the
proper phase, and discard all candidates to the left of
it.

(b) Find the new period of the list by taking the LCM
of the old period of the candidate list and the period
of the additional row.

(c) Trim the right end of the list according to the
length of the new row.

After all m rows are verified, all candidates that
remain in the candidate list are pattern occurrences.

End Algorithm

Complexity (patterns with all rows periodic):
The pattern preprocessing stage has time complexity
O(m?) and space complexity O(m). The text scanning
stage has time complexity O(m?) and space complexity

O(m).

5 Patterns with 1 Non-periodic Row.

In this section we discuss patterns that have at least
1 non-periodic row, or a row with period > m/4.
Henceforth we assume that we have a non-periodic
row. The second case will add at most a constant
factor to our results. The idea that we will use when
searching the text is to begin the search with finding all
occurrences of the non-periodic row in the text block
of size 3m/2 x 3m/2. There will be at most O(m)
occurrences of this row. This will narrow the number
of potential candidates to O(m). We process these
candidates using a modified version of the 2D pattern
matching algorithm of [4]. We have used this algorithm
in a similar way for the 2D run-length length compressed
matching problem [7]. In the following subsection we
describe the 2D matching algorithm of [4].

5.1 Algorithm Overview. The algorithm of [4] per-
forms 2D pattern matching in an uncompressed text in
linear time and space. We first give a brief description
of the original algorithm, and then describe the neces-
sary modifications to the algorithm in order to reduce
the space requirement to O(m).

5.1.1 Pattern Preprocessing. Two witness tables
are constructed for the 2D pattern, one for each direc-
tion of a duel. Given two overlapping copies of a pat-
tern, a witness is a location at which a conflict occurs.
The witness table, Witness[l...m,1...m] contains a
position of a witness for every possible position of over-
lap, i.e. Witness[i, j] is the position of a conflict when
the pattern is placed upon itself at position (i,j). If

all overlapping elements are the same, then we set Wit-
ness[i, j] = *.

5.1.2 Text Scanning. Part 1 (Candidate Con-
sistency): A candidate is a location in the text where
the pattern may occur. We say that two candidates
are consistent if they expect the same text characters
in their region of overlap (i.e. the value of the witness
is a *). At the start of the candidate consistency step,
every text location is a potential candidate. The goal of
the candidate consistency step is to eliminate candidates
by performing duels, until all remaining candidates are
mutually consistent. A duel is performed between two
candidates as follows. We first compute the distance
between the candidates, and access the witness table at
that position. If the value of the witness is a *, then both
candidates remain alive. Otherwise, the value of the
text location at the witness position is compared with
the witness, and the appropriate candidate is killed.

Part 2 (Verification): In the verification phase
the text elements are compared to the pattern elements
to discover actual occurrences of the pattern. Although
a given text location may be contained in several
candidates, since all of the candidates are mutually
consistent, each text element must only be compared
to a single pattern element. The text elements are
compared to the appropriate pattern elements, and all
candidates that have a mismatch within their domain
are discarded. All remaining candidates are pattern
occurrences.

5.1.3 The Compressed Version. Since we want
our space to be O(m) we cannot construct the entire
witness table. However, the number of candidates at the
start of the text processing phase is O(m) and therefore
we can allow O(m) time per duel, instead of performing
the usual constant time duel. Thus, we construct a
table of size O(m) which allows us to locate a witness
in O(m) time. The outline of the algorithm is similar to
the description of [4]. The implementation of the stages
differ as described in the ensuing sections.

Algorithm 3: Patterns with a non-periodic row
Begin Algorithm

Pattern Preprocessing:
Modified witness table construction in O(m) space.

Text Scanning:

1. Search for the non-periodic row in the text to mark
O(m) potential candidates.

2. Duel between the O(m) candidates.

3. Verify the consistent candidates.

End Algorithm

To search for the non-periodic row, we uncompress
one text row at a time and perform the search. At
most O(1) occurrences will be found in each text row,
resulting in O(m) possible pattern starts. We can
then apply the two phases of the ABF algorithm,
dueling and verification. Both the dueling order §5.3,
and the verification, §5.4, are similar in [7] where the
authors applied the ABF algorithm to inplace run-
length compressed search. The section on performing
the actual duel (which immediately follows) is new to
this algorithm.

5.2 Witness Computation and Dueling. In this
section we describe the preprocessing necessary for
performing a duel in the compressed text in O(m) time.
We then describe how the duel is performed. When
constructing a witness table for a 2-dimensional pattern
it is necessary to construct two independent witness
tables, one for each direction of a duel. This applies
as well to the witness table that we will describe in this
section. Specifically, we number the quadrants of P
1,2, 3,4 counterclockwise. We discuss certain properties
of quadrants 1 and 3 for computing witnesses in the
bottom/right direction. For the other direction, the
same holds for quadrants 2 and 4.

DEFINITION 5.1. A L-row is either the first or last m/2
characters in a row.

We divide the patterns into two subclasses. The first
group of patterns has a %—row in quadrant 1 or 3 that
is non-periodic. In the second group, all %—rows in

quadrants 1 and 3 are periodic.

5.2.1 Case 1: Some j}-row (in quadrant 1 or
3) is non-periodic. Pattern Preprocessing: We
assume wlog that the non-periodic %—row is row r
in quadrant 1. We search the pattern for complete
occurrences of the i-row r. There are at most O(m)
occurrences of r in P since r is a non-periodic string.
For each occurrence at location (4, j) in P we compute a
witness for location (i—r, j). The witness is computed in
the naive way in O(m?) time and stored in a linked list
of length O(m). Note that for every location (4, j) of P
for which r does not occur at (i +r,j), no preprocessing
is necessary since there will be a witness for (i,7) in
the row beginning at position (¢ + r,5). The total time
complexity is therefore O(m?).

Dueling: We define two candidates in the text
UL = (z,y) (for upper-left) and BR = (x + i,y + j)
(for bottom right). There is an occurrence of 7 in the

text at both (z + r,y) and at (z + 4 + r,y + j) since
the candidates were marked according to occurrences
of r in the text. We search the witness list to find
whether we have stored a witness for the location (4, j).
If no such witness exists, then we kill UL since it has
an occurrence of r at the wrong location. If a witness
has been recorded then we uncompress the row of the
witness, and in O(m) time we can perform the duel.

5.2.2 Case 2: All %-rows in quadrants 1 and 3
are periodic. Pattern Preprocessing: Every row
has a prefix and/or suffix of length > m/2 that is
periodic. For each row, we compute the period of
its prefix and/or suffix and perform the naming over
the prefixes and suffixes using the equivalence relation
defined in §4.1. We mark the length of the maximal
periodic prefix and suffix for each row, that is, we
check how far to the right (left) the periodic prefix
(suffix) extends. Next, we compute a constant amount
of information per row of P. This information will allow
a duel to be performed in O(m) time.

We describe the preprocessing for row i of P.
Assume UL and BR are two overlapping copies of P
such that BR begins in row ¢ of UL. The overlap
between the two patterns consists of prefixes of rows
1...m — i, and suffixes of rows i...m. We consider
the set of maximal periodic prefixes of rows 1...m —i
and maximal periodic suffixes of rows ¢...m, and we
search for the shortest string in the set. Let £ be the
length of the shortest string in the set, and wlog we
assume that the shortest string is a periodic prefix in
row 1 < r < m —i. The values (¢,r) for row i will be
used to calculate witnesses for all (¢,7), 1 < j < m/2.
For values of j such that m—j > £ (i.e. the width of the
overlap is larger than £) row r will have a witness for all
but at most one location. This is true since the overlap
in row r is a non-periodic string. A non-periodic string
cannot match another string at more than one location
prior to position m/2, since it would match itself before
its 1/2-point contradicting its non-periodicity.

Thus, the preprocessing for row ¢ proceeds as fol-
lows. After finding the values (¢,r) we search for row
r in row r + ¢ and mark the occurrence of the longest
prefix of row r that matches a suffix of row r + 4, if
one exists. Then, we search for a witness for that one
location in the naive way in O(m?) time.

In summary, the preprocessing for Case 2 has 4
steps.

1. For each row of P, find the maximal periodic prefix
and suffix.

2. For each row ¢ of P,

(a) find the shortest string in the set of periodic

prefixes of rows 1. ..m—i and periodic suffixes
of rows i...m. Let £, r be the length/row of
the shortest string.

(b) Find the leftmost occurrence of row r in row
T+ .

(¢) For the position found in the previous step,
find a witness in O(m?) time.

Dueling: We define two candidates in the text,
UL = (z,y) (for upper-left) and BR = (z+i,y+j) (for
bottom right). To duel between UL and BR we retrieve
the values £ and r for row ¢ and check whether m—j > £.

If m—j > £ then the overlap between UL and BR is
longer than £, and the overlap in row r is a non-periodic
string. Thus, there exists a witness in row r for all but
at most one possible value of j. We check whether j is
the matching location computed in the preprocessing.
If yes, the precomputed witness is retrieved, the text
row is uncompressed, and the appropriate candidate is
killed. Otherwise, row x + 4 + r (row r of BR) in the
text contains a witness. The row is uncompressed, and
matched against both rows r and r + ¢ of P. Only one
candidate will survive.

If m—j < £ then all overlapping strings are periodic.
We use a technique similar to the verification described
in §4.2 for patterns with all rows periodic. For each row
in the overlap we check whether the rows in UL and
BR are consistent. The overlap is equal in a given row
if the prefix and suffix have the same name, and the
phase is correct according the position of BR. This
checking can be done in constant time per row. If
all overlapping rows are equal then the candidates are
consistent. Otherwise, we uncompress a non-equal row
in O(m) time and perform the duel.

5.3 Dueling Order. Dueling between all candidates
is necessary to ensure that the candidates are pairwise
consistent. Dueling between all pairs in the naive way
may result in O(m?) duels. We would like the number
of duels to be proportional to m since we spend O(m)
per duel. In this subsection we show how to order the
duels to result in O(m) duels.

We sort the candidate list, first by column and then
by row. If any column has more than one candidate,
we duel within the column first. We then move from
right to left, adding one column at a time. We consider
the four periodicity classes defined in [2]. We show
separately for each periodicity type that using the order
that we described, no more than O(m) duels will be
necessary. Following we describe, for each periodicity
class, the way the pattern starts may appear in an
m/2 x m/2 text block B.

1. Non-periodic: There is at most one pattern occur-
rence in B.

2. Line Periodic: The pattern starts in B all fall on
one line.

3. Radiant Periodic: The pattern starts in B are
ordered monotonically. We say that candidates of a
pattern in a text are ordered monotonically if they
are non-decreasing in both row and column indices
or non-increasing in row index and non-decreasing
in column index.

4. Lattice Periodic: The pattern starts in B fall on
the nodes of a lattice. The lattice is defined by the
basis vectors of the pattern (see [2, 10]).

(1) Non-periodic: If the pattern is non-periodic,
then one candidate is killed in every duel. Since at the
start there are at most O(m) candidates, the number of
duels is no more than O(m).

(2,3) Line and Radiant Periodic: As in [4], we
perform the duels within each logical column. Due to
the transitivity lemma (lemma 3.1 in [4]) the number
of duels within a logical column is no more than the
number of candidates within the column. If the pattern
is line or radiant periodic then at most one candidate
remains alive in each column, resulting in at most m
candidates. We move from right to left, adding one
candidate at a time. Note that the transitivity lemma
holds within the group of consistent candidates since
they are ordered monotonically. Thus, the number of
duels performed between columns is O(m).

(4) Lattice Periodic: Similarly, in the lattice peri-
odic case we first remove conflicts within each logical
column. Moving from right to left, we add one candi-
date at time to the group of consistent candidates. A
given column can contain several candidates, however,
each new candidate can duel with any candidate to its
right. If a candidate dies, then the operation is charged
to the dead candidate. No more than O(m) such duels
will take place. If both candidates remain alive, then the
new candidate is consistent with all of the candidates to
its right. This has been proven in [7].

5.4 Verification. The standard verification entails
comparing each text element with a given pattern
element and marking the positions of each mismatch.
Since all candidates are consistent, each text element
must be compared to only one pattern element. All
candidates that contain a mismatch within their domain
are discarded. We have shown in [7] how a set of
consistent candidates can be verified using O(m) space.
We use a similar technique here, but in this case the

verification is simpler since there are at most O(m)
candidates.

All candidates within an m/2 x m/2 text square
overlap, and thus it is sufficient to verify a given text
row for two candidates: the rightmost and leftmost.
In addition, it is not necessary to mark all of the
mismatches in a given text row. We call column %m
the center of the text. We find the two mismatches in
each row that are the closest to the center, one to its
left, and one to its right. In [7] we have proven that any
candidate that contains a mismatch will include one of
the mismatches that is closest to the center.

Thus, the verification proceeds as follows. For each
text row 4, we find the two mismatches that are the
closest to the center. First, in O(m) time we search the
candidates to find the leftmost and rightmost candidates
that include row ¢. Since these two candidates overlap,
the entire row is covered by the two candidates, and we
verify the row, marking only the one mismatch that
is closest to the center on the left and one on the
right. After all text rows have been verified, we check
each candidate individually. Each candidate checks
whether any of the marked mismatches is in its domain.
All candidates that contain a mismatch are discarded,
and all remaining candidates are reported as pattern
occurrences.

Complexity (patterns with 1 non-periodic row):
Pattern Preprocessing: For case 1, the search for the
non-periodic row in P is done in O(m?) time, and the
computation of O(m) witnesses is done in O(m?) time.
For case 2, both the naming of the prefixes/suffixes, and
the search for O(m) witnesses take O(m?) time. Thus,
the pattern preprocessing stage takes O(m?) time and
uses O(m) space.

Text Scanning: The search for the non-periodic row
in the text is done in O(m?) time. In the dueling stage,
O(m) duels are performed, each taking O(m) time. The
verification also takes O(m?) time since O(m) work is
done per text row and per candidate (of which there
are O(m)). The extra space used for the candidate
list in the dueling stage, and the list of mismatches
in the verification stage is O(m). Overall, the time
complexity of the text scanning phase is O(m?) and the
space complexity is O(m).

6 Conclusion

In this paper, we have presented the first compressed
matching algorithm for 2D Lempel-Ziv Compressed
Matching. The main advantage of our algorithm is
its space efficiency. The algorithm is strongly inplace,
i.e. the amount of extra space used is proportional
to the optimal compression obtainable for a pattern
of size |P|. In addition, the time complexity of the

algorithm is linear in the uncompressed text. Solving
the 2D Lempel-Ziv Compressed Matching Problem in
time proportional to the compressed text remains an
open problem. Reducing the pattern preprocessing
time of our algorithm from O(m?) is another desired
improvement.

Another direction for further research is to solve the
2D Lempel-Ziv Matching Problem for other variations
of the Lempel-Ziv technique (e.g. LZW, LZ77). The
algorithm presented in this paper requires decompres-
sion to be performed in linear time and constant space.
There is no known algorithm for LZW or LZ77 that per-
forms this key operation. In [5], a decompression algo-
rithm for LZW using constant space is described. How-
ever, the time complexity of the algorithm is O(n!-®) for
decompressing a string of length n. Thus, even in the
1-dimensional case, the problem of finding a strongly
inplace/linear time algorithm for LZW and LZ77 Com-
pressed Matching remains open.

Acknowledgements

The authors thank Gadi Horev, chairman of the
Department of radiology at Schneider Children’s Medi-
cal Center in Petach-Tikva, Israel, and Ken Church, for
helpful discussions.

References

[1] A. Amir and G. Benson. Efficient two dimensional
compressed matching. Proc. of Data Compression
Conference, Snow Bird, Utah, pages 279-288, Mar
1992.

[2] A. Amir and G. Benson. Two-dimensional periodicity
and its application. SIAM J. Comp., 27(1):90-106,
February 1998.

[3] A. Amir, G. Benson, and M. Farach. Let sleeping files
lie: Pattern matching in Z-compressed files. Technical
Report GIT-CC-93/42, Georgia Institute of Technol-
ogy, June 1993.

[4] A. Amir, G. Benson, and M. Farach. An alphabet inde-
pendent approach to two dimensional pattern match-
ing. SIAM J. Comp., 23(2):313-323, 1994.

[5] A. Amir, G. Benson, and M. Farach. Let sleeping files
lie: Pattern matching in z-compressed files. Journal of
Computer and System Sciences, 52(2):299-307, 1996.

[6] A. Amir, G. Benson, and M. Farach. Optimal two-
dimensional compressed matching. Journal of Algo-
rithms, 24(2):354-379, August 1997.

[7] A. Amir, G.M. Landau, and D. Sokol. Inplace run-
length 2-dimensional compressed search. Theoretical
Computer Science, 2002. to appear.

[8] P. Berman, M. Karpinski, L. Larmore, W. Plandowski,
and W. Rytter. On the complexity of pattern match-
ing for highly compressed two dimensional texts. In
Proc. 8th Annual Symposium on Combinatorial Pat-
tern Matching (CPM 97), pages 40-51. LNCS 1264,
Springer, 1997.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
18]

M. Farach and M. Thorup. String matching in Lempel-
Ziv compressed strings. Proc. 27th Annual ACM
Symposium on the Theory of Computing, pages 703—
712, 1995.

Z. Galil and K. Park. Alphabet-independent two-
dimensional witness computation. SIAM J. Comput-
ing, 25(5):907-935, October 1996.

L. Gasieniec, M. Karpinski, W. Plandowski, and
W. Rytter. Randomized efficient algorithms for
compressed strings: The finger-print approach. In
Proc. Tth Annual Symposium on Combinatorial Pat-
tern Matching (CPM 96), pages 39-49. LNCS 1075,
Springer, 1996.

L. Gasieniec and W. Rytter. Almost optimal fully
compresssed pattern matching. In Data Compression
Conference (DCC), Snow Bird, Utah, pages 434-443,
1999.

D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern
matching in strings. STAM J. Computing, 6:323-350,
1977.

A. Lempel and J. Ziv. Compression of two-dimensional
images. In Z. Galil A. Apostolico, editor, Combinato-
rial Algorithms on Words, volume 12, pages 141-154.
NATO ASI Series F, 1985.

W.Plandowski L.Gasieniec and W.Rytter. Constant-
space string matching with smaller number of compar-
isons: sequential sampling. In Proc. 6th Annual Sym-
posium on Combinatorial Pattern Matching (CPM 95).
LNCS, Springer, 1995.

N. Memon, D. Neuhoff, and S. Shende. An analysis of
some common scanning techniques for lossless image
coding. http://citeseer.nj.nec.com/23495.html.

J. Ziv. personal communication. 1995.

J. Ziv and A. Lempel. Compression of individual
sequences via variable rate coding. IEEE Trans. on
Information Theory, 1T-24:530-536, 1978.

