
The Stackelberg Minimum Spanning Tree Game
on Planar and Bounded-Treewidth Graphs

Jean Cardinal∗ Erik D. Demaine† Samuel Fiorini‡ Gwenaël Joret§

Ilan Newman¶ Oren Weimann‖

Abstract

The Stackelberg Minimum Spanning Tree Game is a two-level combinatorial pricing problem
introduced at WADS’07. The game is played on a graph (representing a network), whose edges
are colored either red or blue, and where the red edges have a given fixed cost (representing the
competitor’s prices). The first player chooses an assignment of prices to the blue edges, and the
second player then buys the cheapest spanning tree, using any combination of red and blue edges.
The goal of the first player is to maximize the total price of purchased blue edges.

We study this problem in the cases of planar and bounded-treewidth graphs. We show that the
problem is NP-hard on planar graphs but can be solved in polynomial time on graphs of bounded
treewidth.

1 Introduction

A young startup company has just acquired a collection of point-to-point tubes between various sites
on the Interweb. The company’s goal is to sell the use of these tubes to a particularly stingy client,
who will buy a minimum-cost spanning tree of the network. Unfortunately, the company has a direct
competitor: the government sells the use of a different collection of point-to-point tubes at publicly
known prices. Our goal is to set the company’s tube prices to maximize the company’s income, given
the government’s prices and the knowledge that the client will buy a minimum spanning tree made
from any combination of company and government tubes. Naturally, if we set the prices too high,
the client will rather buy the government’s tubes, while if we set the prices too low, we unnecessarily
reduce the company’s income.

∗Université Libre de Bruxelles (ULB), Département d’Informatique, CP 212, B-1050 Brussels, Belgium,
jcardin@ulb.ac.be.
†MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA, edemaine@mit.edu.
‡Université Libre de Bruxelles (ULB), Département de Mathématique, CP 216, B-1050 Brussels, Belgium, sfior-

ini@ulb.ac.be.
§Université Libre de Bruxelles (ULB), Département d’Informatique, CP 212, B-1050 Brussels, Belgium,

gjoret@ulb.ac.be. G. Joret is a Postdoctoral Researcher of the Fonds National de la Recherche Scientifique (F.R.S.–FNRS).
¶Department of Computer Science, University of Haifa, Haifa 31905, Israel, ilan@cs.haifa.ac.il.
‖Weizmann Institute of Science, Faculty of Mathematics and Computer Science, POB 26, Rehovot 76100, Israel,

oren.weimann@weizmann.ac.il.

1

ar
X

iv
:0

90
9.

32
21

v1
 [

cs
.G

T
]

 1
7

Se
p

20
09

revenue = 4

1

1

2

3

1

1
?

2

3

?

?

3

3

3

1

2 1 2

1

3

Pricing MST

Instance

1

revenue = 3

1

1

2

3

1

1

2

1

Figure 1: A sample instance of the STACKMST problem. The goal is to assign prices to the blue
edges to maximize the total price of the blue edges purchased in a minimum spanning tree.

This problem is called the Stackelberg Minimum Spanning Tree Game [CDF+07], and is an exam-
ple in the growing family of algorithmic game-theoretic problems about combinatorial optimization
in graphs [BHK08, GvLSU09, LMS98, RSM05, vH06, BGPW08]. More formally, we are given an
undirected graph G (possibly with parallel edges, but no loops), whose edge set E(G) is partitioned
into a red edge set R(G) and a blue edge set B(G). We are also given a cost function c : R(G)→ R+

assigning a positive cost to each red edge. The STACKMST problem is to assign a price p(e) to each
blue edge e, resulting in a weighted graph (G, c ∪ p), to maximize the total price of blue edges in a
minimum spanning tree. We assume that, if there is more than one minimum spanning tree, we obtain
the maximum possible income. (Otherwise, we could decrease the prices slightly and get arbitrarily
close to the same income.) Figure 1 shows an example.

This problem is thus a two-player two-level optimization problem, in which the leader (the com-
pany) chooses a strategy (a price assignment), taking into account the strategy of the follower (the
client), which is determined by a second-level optimization problem (the minimum spanning tree
problem). Such a game is known as a Stackelberg game in economics [vS34].

The complexity and approximability of the STACKMST problem has been studied in a previous
paper [CDF+07], which shows the following results. The problem is APX-hard, but can be approxi-
mated within a logarithmic factor. Constant-factor approximation exist for the special cases in which
the given costs are bounded or take a bounded number of distinct values. Finally, an integer program-
ming formulation has an integrality gap corresponding to the best known approximation factors.

Instead of restricting the edge weights, we can restrict the class of allowed graphs, with the hope
of obtaining better approximation algorithms. One natural class of graphs is planar graphs, on which
many important problems admit polynomial-time approximation schemes. Many of these results use
Baker’s technique [Bak94] or more modern variations [Kle05, Kle06, BKMK07, DHM07, DHK09],

2

which ultimately rely on the ability to efficiently solve the problem in graphs of bounded treewidth in
polynomial time. Such algorithms generally use dynamic programming, using a textbook technique
for well-behaved problems. In particular, the problem of checking a graph-theoretic property express-
ible in monadic second-order logic is fixed-parameter tractable with respect to the treewidth of the
graph; see [Cou08] for a survey. However, few if any such dynamic programs have been developed
for a two-level optimization problem such as STACKMST, and standard techniques do not seem to
apply.

In this paper, we consider the STACKMST problem in these two graph classes: planar graphs and
bounded-treewidth graphs. We prove in Section 2 that STACKMST remains NP-hard when restricted
to planar graphs. We develop in Section 4 a polynomial-time dynamic programming algorithm for
STACKMST in graphs of bounded treewidth. Along the way, we develop in Section 3 a dynamic
programing algorithm for series-parallel graphs, or equivalently, biconnected graphs of treewidth at
most 2, which are also planar.

To our knowledge, our algorithms are the first examples of a two-level pricing problem solved
by dynamic programming on a graph decomposition tree. We believe that this result provides insight
into the structure of the problem, and could be a stepping stone toward a polynomial-time approxi-
mation scheme for planar graphs. More generally, we believe that our techniques may be useful in
the design of dynamic programming algorithms for other pricing problems in graphs, including pric-
ing problems with many followers [BHK08, GvLSU09], and Stackelberg problems involving shortest
paths [RSM05] or shortest path trees [BGPW08].

2 Planar Graphs

We consider the STACKMST problem on planar graphs. We strengthen the hardness result given
in [CDF+07] by showing that the problem remains NP-hard in this special case. The reduction is from
the minimum connected vertex cover problem, which is known to be NP-hard, even when restricted to
planar graphs of maximum degree 4 (see Garey and Johnson [GJ79]). The minimum connected vertex
cover problem consists of finding a minimum-size subset C of the vertices of a graph, such that every
edge has at least one endpoint in C, and C induces a connected graph.

Theorem 1. The STACKMST problem is NP-hard, even when restricted to planar graphs.

Proof. Given a planar graph G = (V,E), with |V | = n and |E| = m, we construct an instance
of STACKMST with red costs in {1, 2}. Let G′ = (V ′, R ∪ B) be the graph for this instance, with
(R,B) a bipartition of the edge set. We first let V ′ = V ∪ E. The set of blue edges B is the set
{ve : e ∈ E, v ∈ e}. Thus the blue subgraph is the vertex-edge incidence graph of G, which is clearly
planar. Given a planar embedding of the blue subgraph, we connect all vertices e ∈ E of G′ by a tree,
all edges of which are red and have cost 1. The graph can be kept planar by letting those red edges be
nonintersecting chords of the faces of the embedding. Finally, we double all blue edges by red edges
of cost 2. The whole construction is illustrated in figure 2(a).

Let t be a positive integer. We show that the revenue for an optimal price function for G′ is at least
m+ 2n− t− 1 if and only if there exists a connected vertex cover of G of size at most t.

3

11

2

2

2

2

22

2

2

2

2 2

11

2

1

(a) The graphs G and G′.

2

1

1 1

11
1

1

1

2

(b) A connected vertex cover in G and the cor-
responding price function in G′.

Figure 2: Illustration of the proof of Theorem 1.

(⇐) We first suppose that there exists such a connected vertex cover C ⊆ V , and show how to
construct a price function yielding the given revenue.

From the set C, we can construct a tree made of blue edges that spans all vertices e ∈ E of G′.
The set of vertices of this tree is C ∪ E, and its edges are of the form ue ∈ E′, with u ∈ C and
e ∈ E (see figure 2(b)). This tree has t+m− 1 blue edges, to which we assign price 1. Now we have
to connect the remaining n − t vertices belonging to V . Since the only red edges incident to these
vertices have cost 2, we can use n− t blue edges of price 2 to include these vertices in the minimum
spanning tree. The price of the other blue edges is set to ∞. The revenue for this price function is
exactly (t+m− 1) + 2(n− t) = m+ 2n− t− 1.

(⇒) Now suppose that we have a price function yielding revenue at least m+ 2n− t− 1. We can
assume (see [CDF+07]) that all the prices belong to the set {1, 2,∞}. We also assume that the price
function is optimal and minimizes the number of red edges in the resulting spanning tree T .

First, we observe that T does not contain any red edge. By contradiction, if T contains a red edge
of cost 2, then this edge can be replaced by the parallel blue edge. On the other hand, if T contains a
red edge f of cost 1, we consider the cut defined by removing f from T . In the face used to define f ,
there exists a blue edge having its endpoints across the cut and does not belong to T . So we can use
this blue edge, with a price equal to 1, to reconnect the tree.

Now let us consider the blue edges of price 1 in T . We claim that the graph H induced by these
edges contains all vertices e ∈ E of G′ and is connected.

Clearly, all vertices e ∈ E of G′ are incident to a blue edge of price 1, otherwise it can be
reconnected to T with a red edge of cost 1, and T is not minimum. Thus E ⊆ V (H), where V (H)
is the vertex set of H . Letting C := V (H) ∩ V , we conclude that C is a vertex cover of the original
graph G.

Now we show that H is connected. Suppose otherwise; then there exist two vertices of G′ in E
that are connected by a red edge of cost 1, and belonging to two different connected components H1

and H2 of H . Consider the (blue) edge that connects H1 and H2 in T . This edge cannot have price
2 in T , since H1 and H2 are connected by a red edge of cost 1. Hence the blue edge has price 1 and
belongs to H . Therefore H is connected and C is a connected vertex cover of G.

Finally the remaining vertices V − C of G′ must be leaves of T , since otherwise they belong to a
cycle containing a red edge of cost 1. The total cost of T is therefore (m+ |C| − 1) + 2(n− |C|) =

4

m+ 2n− |C| − 1. Since we know this is at least m+ 2n− t− 1, we conclude that |C| ≤ t.

3 Series-Parallel Graphs

We now describe a polynomial-time dynamic programming algorithm for solving the STACKMST
problem on series-parallel graphs. These graphs are the biconnected graphs excluding K4 as a minor,
or equivalently, biconnected graphs with treewidth at most 2.

We use the following inductive definition of (connected) series-parallel graphs. Consider a con-
nected graph G with two distinguished vertices s and t. The graph (G, s, t) is a series-parallel graph
if either G is a single edge (s, t), or G is a series or parallel composition of two series-parallel graphs
(G1, s1, t1) and (G2, s2, t2). The series composition of G1 and G2 is formed by setting s = s1, t = t2

and identifying t1 = s2; the parallel composition is formed by identifying s = s1 = s2 and
t = t1 = t2.

Theorem 2. The STACKMST problem can be solved in O(m4) time on series-parallel graphs.

3.1 Definitions

Let us fix an instance of STACKMST, that is, a graph G with E(G) = R(G)∪B(G) endowed with a
cost function c : R(G) → R+. Denote by c1, c2, . . . , ck the different values taken by c, in increasing
order. Let also c0 := 0.

For two distinct vertices s, t ∈ V (G) of G and a subset F ⊆ B(G) of blue edges, define
P(G,F, s, t) as the set of st-paths in the graph (V (G), R(G) ∪ F). Let also P̃(G,F, s, t) denote the
subset of paths inP(G,F, s, t) that contain at least one red edge. A lemma of Cardinal et al. [CDF+07]
can be restated as follows.

Lemma 1 ([CDF+07]). Suppose thatG contains a red spanning tree, and let F ⊆ B(G) be an acyclic
subset of blue edges. Then, the maximum revenue achievable by the leader, over solutions where the
set of blue edges bought by the follower is exactly F , is obtained by setting the price of each edge
st 6∈ F to +∞, and the price of each edge st ∈ F to

min
{

max
e∈P∩R(G)

c(e) | P ∈ P̃(G,F, s, t)
}
.

This lemma states that if we know the set of blue edges that will eventually be bought, the price
of a selected blue edge st is given by the minimum, over the paths from s to t, of the largest red cost
on this path.

Motivated by this result, we introduce some more notations. For a subset Z ⊆ E(G) of edges, we
define mc(Z) as the maximum cost of a red edge in Z if Z ∩ R(G) 6= ∅, as c0 = 0 otherwise. (The
two letters mc stand for “max cost”.) We define w(G,F, s, t) as

w(G,F, s, t) :=

{
min {mc(P) | P ∈ P(G,F, s, t)} if P(G,F, s, t) 6= ∅;
ck otherwise.

5

Similarly,

w̃(G,F, s, t) :=

{
min

{
mc(P) | P ∈ P̃(G,F, s, t)

}
if P̃(G,F, s, t) 6= ∅;

ck otherwise.

Thus, the price assigned to the edge st ∈ F in Lemma 1 is w̃(G,F, s, t). Also, we will consider
graphs that do not necessarily contain a red spanning tree; this is why we need to treat the case where
P(G,F, s, t) or P̃(G,F, s, t) is empty in the above definitions.

In what follows, we let [k] := {0, 1, . . . , k}. Our dynamic programming solution for series-
parallel graphs associates a value to each pair (H, q), where q ∈ [k]2, and H is a graph appearing in
the series-parallel decomposition of G.

A subset F ⊆ B(G) of blue edges realizes q = (i, j) ∈ [k]2 in (G, s, t) if F is acyclic and
w(G,F, s, t) = ci. Although this property does not depend on j, the formulation will appear to be
convenient. Similarly, we say that q is realizable in (G, s, t) if there exists such a subset F .

For j ∈ [k] and distinct vertices s, t ∈ V (G), let G+ denote the graph G with an additional red
edge between s and t of cost cj . We define

OPT(i,j)(G, s, t) := max

{∑
uv∈F

w̃(G+, F, u, v)

∣∣∣∣∣F ⊆ B(G), F realizes (i, j) in (G, s, t)

}
,

if such a subset F exists, and set OPT(i,j)(G, s, t) := −∞ otherwise.

Intuitively, we want to keep track of optimal acyclic subsets of blue edges for every graph G
obtained during the construction of a series-parallel graph. The problem is, that the weights of the blue
edges in the optimal solution might change as we compose graphs in the series-parallel decomposition.
However, the weights of edges depend only on the maximum red costs, or bottlenecks, of the new st-
paths that will be added to G. We can thus prepare OPT(G, s, t) for every possible set of bottlenecks.
These bottlenecks are the values j in what precedes.

Note that by Lemma 1, if G has a red spanning tree, then the maximum revenue achievable by the
leader on instance G equals

max
i∈[k]

OPT(i,k)(G, s, t).

This will be the result returned by the dynamic programming solution.

3.2 Series Compositions

Let q = (i, j), q1 = (i1, j1), and q2 = (i2, j2), with q, q1, q2 ∈ [k]2. We say that the pair (q1, q2) is
series-compatible with q if

(S1) max{i1, i2} = i;

(S2) max{j, i2} = j1, and

(S3) max{j, i1} = j2,

6

Notice that (q1, q2) is series-compatible with q if and only if (q2, q1) is.
This condition allows us to use the following recursion in our dynamic programming algorithm.

Lemma 2. Suppose that (G, s, t) is a series composition of (G1, s1, t1) and (G2, s2, t2), and that
q ∈ [k]2 is realizable in (G, s, t). Then

OPTq(G, s, t) = max {OPTq1(G1, s1, t1) + OPTq2(G2, s2, t2) | (q1, q2) is series-compatible with q} .

We now prove that the recursion is valid. We need the following lemmas. In what follows, (G, s, t)
is a series composition of (G1, s1, t1) and (G2, s2, t2); q, q1, q2 ∈ [k]2 with q = (i, j), q1 = (i1, j1),
and q2 = (i2, j2) are such that (q1, q2) is series-compatible with q; and F` ⊆ B(G`) realizes q` in
(G`, s, t), for ` = 1, 2.

We first observe that F := F1 ∪ F2 realizes q.

Lemma 3. F realizes q in (G, s, t).

Proof. Since V (G1) ∩ V (G2) = {t1} (= {s2}), the set F is clearly acyclic. It remains to
show w(G,F, s, t) = ci. Every st-path in P(G,F, s, t) is the combination of an s1t1-path of
P(G1, F1, s1, t1) with an s2t2-path of P(G2, F2, s2, t2). It follows

w(G,F, s, t) = max {w(G1, F1, s1, t1), w(G2, F2, s2, t2)} = max{ci1 , ci2} = ci,

where the last equality is from (S1).

The proof of the next lemma is illustrated on Figure 3. It motivates the definition of series-
compatibility.

Lemma 4. Let G+ be the graph G augmented with a red edge st of cost cj , and G+
` (for ` = 1, 2) the

graph G` augmented with a red edge s`t` of cost cj`
. Then for ` = 1, 2 and every edge uv ∈ F`,

w̃(G+, F, u, v) = w̃(G+
` , F`, u, v).

Proof. We prove the statement for ` = 1, the case ` = 2 follows by symmetry. Let uv ∈ F1, and let
e = st and e1 = s1t1 be the additional red edges in G+ and G+

1 , respectively.
We first show:

Claim 1. w̃(G+, F, u, v) ≥ w̃(G+
1 , F1, u, v).

Proof. The claim is true if P̃(G+, F, u, v) = ∅, since then w̃(G+, F, u, v) = ck ≥ w̃(G+
1 , F1, u, v).

Suppose thus P̃(G+, F, u, v) 6= ∅, and let P ∈ P̃(G+, F, u, v). It is enough to show that mc(P) ≥
w̃(G+

1 , F1, u, v). This clearly holds if e /∈ E(P), as P belongs then also to P̃(G+
1 , F1, u, v) (recall

that |V (G1) ∩ V (G2)| = 1). Hence, we may assume e ∈ E(P). It follows s1, t1 ∈ V (P).
Let P1 denote the path of P̃(G+

1 , F1, u, v) obtained by replacing the subpath s1Pt1 of P with the
edge e1. Using (S2), we obtain

mc(s1Pt1) = max{cj ,mc(t2Pt1)} ≥ max{cj , ci2} = cj1 ,

implying mc(P) ≥ mc(P1) ≥ w̃(G+
1 , F1, u, v).

7

c

c

c t

e

u v

1

1

=

e (cost)

(cost

2(max cost)

j1
)

i2

j

s2 t1

P2s

Figure 3: Series composition: illustration of the proof of Lemma 4.

Conversely, we prove:

Claim 2. w̃(G+, F, u, v) ≤ w̃(G+
1 , F1, u, v).

Proof. Again, this trivially holds if P̃(G+
1 , F1, u, v) is empty. Suppose thus P̃(G+

1 , F1, u, v) 6= ∅, and
let P1 ∈ P̃(G+

1 , F1, u, v). Similarly as before, it is enough to show that w̃(G+, F, u, v) ≤ mc(P1).
This is true if e1 /∈ E(P1), since then P1 ∈ P̃(G+, F, u, v). Assume thus e1 ∈ E(P1).

If P(G2, F2, s2, t2) = ∅, then i2 = k and mc(P1) ≥ cj1 = max{cj , ci2} = ck ≥ w̃(G+, F, u, v)
by (S2). We may thus assume that P(G2, F2, s2, t2) contains a path P2; we choose P2 such that
mc(P2) = ci2 .

Denote by P the path obtained from P1 by replacing the edge e1 with the combination of edge e
and path P2. Since P ∈ P̃(G+, F, u, v), (S2) yields

mc(P1) = max {cj1 ,mc(P1 − e1)}
= max {cj , ci2 ,mc(P1 − e1)}
= max {cj ,mc(P2),mc(P1 − e1)}
= mc(P)

≥ w̃(G+, F, u, v).

The lemma follows from Claims 1 and 2.

We are now ready to prove the correctness of the recursion step in Lemma 2.

Proof of Lemma 2. Let q and G+ be defined as before. We first show:

Claim 3. There exist q1, q2 ∈ [k]2 such that (q1, q2) is series-compatible with q and OPTq(G, s, t) ≤
OPTq1(G1, s, t) + OPTq2(G2, s, t).

Proof. Let F ⊆ B(G) be a subset of blue edges realizing q in (G, s, t) such that

OPTq(G, s, t) =
∑

uv∈F

w̃(G+, F, u, v).

8

For ` = 1, 2, let also F` := F ∩ E(G`) and q` := (i`, j`), with i` the index such that ci` =
w(G`, F`, s`, t`), and j` := max{j, i`+1} (indices are taken modulo 2). F` (` = 1, 2) clearly re-
alizes q` in (G`, s`, t`). It is also easily verified that (q1, q2) is series-compatible with q. Hence we
can apply Lemma 4:

OPTq(G, s, t) =
∑

uv∈F

w̃(G+, F, u, v)

=
∑

uv∈F1

w̃(G+
1 , F1, u, v) +

∑
uv∈F2

w̃(G+
2 , F2, u, v)

≤ OPTq1(G1, s1, t1) + OPTq2(G2, s2, t2),

as claimed.

We now prove:

Claim 4. OPTq(G, s, t) ≥ OPTq1(G1, s1, t1)+OPTq2(G2, s2, t2) holds for every q1, q2 ∈ [k]2 such
that (q1, q2) is series-compatible with q.

Proof. Suppose that (q1, q2) is series-compatible with q. Let F` ⊆ B(G`) (` = 1, 2) be a subset of
blue edges of G` such that

OPTq`
(G`, s`, t`) =

∑
uv∈F`

w̃(G+
` , F`, u, v).

By Lemma 3, F := F1 ∪ F2 realizes q in (G, s, t). Using again Lemma 4, we have:

OPTq(G, s, t) ≥
∑

uv∈F

w̃(G+, F, u, v)

=
∑

uv∈F1

w̃(G+
1 , F1, u, v) +

∑
uv∈F2

w̃(G+
2 , F2, u, v)

= OPTq1(G1, s1, t1) + OPTq2(G2, s2, t2),

and the claim follows.

The lemma follows from Claims 3 and 4.

3.3 Parallel Compositions

The recursion step for parallel compositions follows a similar scheme. Let q, q1, q2 ∈ [k]2 with
q = (i, j), q1 = (i1, j1), and q2 = (i2, j2). We say that the pair (q1, q2) is parallel-compatible with q
if

(P1) at least one of i1, i2 is non-zero;

(P2) min{i1, i2} = i;

(P3) min{j, i2} = j1, and

(P4) min{j, i1} = j2,

9

The recursion step for parallel composition is as follows.

Lemma 5. Suppose that (G, s, t) is a parallel composition of (G1, s, t) and (G2, s, t), and that q ∈
[k]2 is realizable in (G, s, t). Then

OPTq(G, s, t) = max{OPTq1(G1, s, t) + OPTq2(G2, s, t) | (q1, q2) is parallel-compatible with q}.

In what follows, (G, s, t) is a parallel composition of (G1, s, t) and (G2, s, t); (q1, q2) is parallel-
compatible with q; and F` ⊆ B(G`) realizes q` in (G`, s, t), for ` = 1, 2. Also, F := F1 ∪ F2.

Similarly to Lemma 3, the definition of parallel-compatibility implies the following lemma.

Lemma 6. F realizes q in (G, s, t).

Proof. We have to prove that F is acyclic and that w(G,F, s, t) = ci.
First, suppose that (V (G), F) contains a cycle C. Since F1 and F2 are both acyclic, C includes

the vertices s and t, and moreover E(G1) ∩ E(C), E(G2) ∩ E(C) are both non-empty. But then,
there is an st-path in (V (G), F`) for ` = 1, 2, implying i1 = i2 = 0, which contradicts (P1). Hence,
F is acyclic.

Now, since each path of P(G,F, s, t) is included in either P(G1, F1, s, t) or P(G2, F2, s, t), it
follows w(G,F, s, t) = min{w(G1, F1, s, t), w(G2, F2, s, t)} = min{ci1 , ci2}, which equals ci by
(P2).

The next lemma is the analogue of Lemma 4 for parallel compositions.

Lemma 7. Let G+ be the graph G augmented with a red edge st of cost cj , and let G+
` (for ` = 1, 2)

be the graphG` augmented with a red edge s`t` of cost cj`
. Then for ` = 1, 2 and every edge uv ∈ F`,

w̃(G+, F, u, v) = w̃(G+
` , F`, u, v).

Proof. We prove the statement for ` = 1, the case ` = 2 follows by symmetry. Let e = st and
e1 = s1t1 be the additional red edges in G+ and G+

1 , respectively.
Let uv ∈ F1. Observe that P̃(G+, F, u, v) is empty if and only if P̃(G+

1 , F1, u, v) is. If both are
empty, then w̃(G+, F, x, y) = w̃(G+

1 , F1, u, v) = ck, and the claim holds. Hence, we may assume
P̃(G+, F, u, v) 6= ∅ and P̃(G+

1 , F1, u, v) 6= ∅.
We first show:

Claim 5. w̃(G+, F, u, v) ≤ w̃(G+
1 , F1, u, v).

Proof. Let P1 ∈ P̃(G+
1 , F1, u, v). It is enough to show w̃(G+, F, u, v) ≤ mc(P1). If e1 /∈ E(P1),

then P1 ∈ P̃(G+, F, u, v), and w̃(G+, F, u, v) ≤ mc(P1) holds by definition. Hence we may assume
e1 ∈ E(P1).

By (P3), we have j1 = min{j, i2}. If j1 = j, then replacing the edge e1 of P1 by e yields a path
P ∈ P̃(G+, F, u, v) with mc(P) = mc(P1), implying w̃(G+, F, u, v) ≤ mc(P1). Similarly, if j1 =
i2 < j, then i2 < k, implying that P(G2, F2, s, t) is not empty. Replacing in P1 the edge e with any
path P2 ∈ P(G2, F2, s, t) with mc(P2) = ci2 gives again a path P with mc(P) = mc(P1). While the
path P2 does not necessarily contain a red edge, the path P , on the other hand, cannot be completely

10

blue. This is because otherwise F contains the cycle P ∪{uv}, contradicting the fact that F is acyclic
(as follows from Lemma 6). Hence, P ∈ P̃(G+, F, u, v), and w̃(G+, F, u, v) ≤ mc(P) = mc(P1).
Claim 5 follows.

Conversely, we prove:

Claim 6. w̃(G+, F, u, v) ≥ w̃(G+
1 , F1, u, v).

Proof. Let P ∈ P̃(G+, F, u, v). Again, it is enough to show mc(P) ≥ w̃(G+
1 , F1, u, v). This clearly

holds if P ∈ P̃(G+
1 , F1, u, v). Hence, we may assume s, t ∈ V (P), and that the subpath sP t of P

either belongs to P(G2, F2, s, t), or corresponds to the edge e.
In the first case, ci2 ≤ mc(sP t) holds by definition. Moreover, j1 ≤ i2 follows from (P3).

Therefore, replacing the subpath sP t of P with the edge e1 yields a path P1 ∈ P̃(G+
1 , F1, u, v) with

mc(P1) ≤ mc(P), implying w̃(G+
1 , F1, u, v) ≤ mc(P).

Similarly, (P3) implies j1 ≤ j in the second case. Hence, replacing the edge e of P with e1 results
in a path P1 ∈ P̃(G+

1 , F1, u, v) with mc(P1) ≤ mc(P), showing w̃(G+
1 , F1, u, v) ≤ mc(P). This

completes the proof of Claim 6.

Lemma 7 follows from Claims 5 and 6.

Using the two previous lemmas, the proof of Lemma 5 is the same as that of Lemma 2 for series
composition. We omit it.

3.4 The Algorithm

A series-parallel decomposition of a connected series-parallel graph can be computed in linear
time [VTL82]. Given such a decomposition, Lemmas 2 and 5 yield the following algorithm: consider
each graph (H, s, t) in the decomposition tree in a bottom-up fashion. If H is a single edge, compute
OPTq(H, s, t) for every q ∈ [k]2. If (H, s, t) is a series or parallel composition of (H1, s1, t1) and
(H2, s2, t2), compute OPTq(H, s, t) for every q ∈ [k]2 based on the previously computed values for
(H1, s1, t1) and (H2, s2, t2), relying on Lemmas 2 and 5.

For every q = (i, j) ∈ [k]2, there are O(k) possible values for either series-compatible or parallel-
compatible pairs (q1, q2). Hence every step costs O(k) times. Since there are O(k2) possible values
for q, and O(m) graphs in the decomposition of G, the overall complexity is O(k3m) = O(m4).

This results in a polynomial-time algorithm computing the maximum revenue achievable by the
leader. Moreover, using Lemmas 3 and 6, it is not difficult to keep track at each step of a witness
F ⊆ B(H) for OPTq(H, s, t), whenever OPTq(H, s, t) > −∞. This proves Theorem 2.

4 Bounded-Treewidth Graphs

In the previous section, we gave a polynomial-time algorithm for solving the STACKMST problem on
series-parallel graphs, which are biconnected graphs of treewidth 2. In this section, we show how to
extend the algorithm to any graph of bounded treewidth, as indicated by the following theorem.

Theorem 3. The STACKMST problem can be solved in mO(ω2) time on graphs of treewidth ω.

11

The treewidth of a graph can be defined in several ways. We follow Abrahamson and Fel-
lows [AF93] and characterize a graph of treewidth ω as an ω-boundaried graph. An ω-boundaried
graph is a graph with ω distinguished vertices (called boundary vertices), each uniquely labeled by a
label in {1, . . . , ω}. ω-boundaried graphs are formed recursively by the following composition oper-
ators:

1. The null operator ∅ creates a boundaried graph which has only boundary vertices, and they are
all isolated.

2. The binary operator ⊕ takes the disjoint union of two ω-boundaried graphs by identifying the
ith boundary vertex of the first graph with the ith boundary vertex of the second graph. If there
are only two boundary vertices s and t then this is exactly a parallel-composition.

3. The unary operator η introduces a new isolated vertex and makes this the new vertex with label
1 in the boundary. The previous vertex that was labeled 1 is removed from the boundary but not
from the graph.

4. The unary operator ε adds an edge between the vertices labeled 1 and 2 in the boundary.

5. Unary operators that permute the labels of the boundary vertices.

Any ω-boundaried graph (and hence any graph of treewidth ω) can be constructed by applying
O(ωn) compositions according to the above five operators. This construction as well as the boundary
vertices can be found in linear time [Bod96].

4.1 Definitions

Given an ω-boundaried graph G = (V,E) and two distinct boundary vertices a, b ∈ {1, 2, . . . , ω}, we
call an ab-path internal if the only boundary vertices it passes through are a and b. We slightly mod-
ify the definition of P(G,F, a, b), P̃(G,F, a, b), w(G,F, a, b), and w̃(G,F, a, b) from the previous
section to only include internal ab-paths.

As in the series-parallel case, we want to keep track of optimal acyclic subsets of blue edges for
every graphG obtained during the construction of a bounded-treewidth graph. Notice that the weights
of edges in an optimal solution depend only on the bottlenecks of the new internal paths that will be
added toG. We thus prepareOPT (G)s for every possible set of bottlenecks (the jabs in what follows)
between any two boundary vertices a and b.

Let Iω×ω be a matrix of pairs where I[a, b] = I[b, a] = (iab, jab) for some iab, jab ∈ {0, 1, . . . , k}.
Let OPTI(G) be the optimal solution to STACKMST (that is, an acyclic subset of blue edges F) on
the graph G+ obtained from G by adding a red edge connecting a and b of cost cjab

for every pair
of distinct boundary vertices a, b ∈ {1, 2, . . . , ω}, subject to the conditions that for every distinct
a, b ∈ {1, 2, . . . , ω} we have w(G,F, a, b) = ciab

.
During the construction, we store for every graph G the partial solutions OPTI(G) for every

possible I . In cases where OPTI(G) is undefined (no proper F exists), we set OPTI(G) = −∞.
Also, we abuse the notation OPTI(G) for denoting both the acyclic subset F and its revenue.

12

4.2 The Algorithm.

We now describe our bounded-treewidth algorithm by showing how to maintain theOPTI information
as G is constructed by the five operators. We present the algorithm along with a proof sketch of its
correction. We use (iab, jab) to denote I’s pairs, (i1ab, j

1
ab) for I1’s pairs, (i2ab, j

2
ab) for I2’s pairs, and

(i′ab, j
′
ab) for I ′’s pairs.

We begin with the null operator ∅ that creates a new graph G with isolated vertices labeled
1, . . . , ω. Therefore, we set OPTI(G) = 0 (associated with F = ∅) for every I whose entries
are all of the form (k, jab). The value iab is required to be k as there are no internal paths at all; the
jabs can be arbitrary values in {0, 1, . . . , k}. For all other Is we set OPTI(G) = −∞.

If G = G1 ⊕ G2, then OPTI(G) = max{OPTI1(G) ∪ OPTI2(G)}. This operator is a lot like
a parallel-composition of series-parallel graphs. Indeed, in the following conditions on the compati-
bility of I, I1, I2, the first four conditions are exactly the same as in a parallel-composition, only they
must hold for every pair of boundary vertices (whereas in the series-parallel case there was only one
pair). The fifth condition makes sure that the blue edges that will be purchased do not form a cycle.
Therefore, if G = G1 ⊕G2, we require that

1. at least one of i1ab, i
2
ab is non-zero,

2. iab = min{i1ab, i
2
ab},

3. j1ab = min{jab, i
2
ab},

4. j2ab = min{jab, i
1
ab},

for every distinct a, b ∈ {1, . . . , ω}, and moreover that

5. the graph H is acyclic, where V (H) = {1, . . . , ω} and distinct a, b ∈ V (H) are adjacent in H
if iab = 0.

If G = η(G′), then a new isolated boundary vertex v with label 1 is created, and the old 1-labeled
vertex u is now no longer a boundary vertex. Since no edges are modified, the optimal solutions for
G′ and G are the same and we set OPTI(G) = OPTI′(G′). Notice that an ab-path between two
distinct boundary vertices a, b 6= u that go through u is not an internal path in G′, but could be in G
(if the path does not contain any other boundary vertex). This fact is captured by the first two of the
following four conditions. If G = η(G′) we require that, for every distinct a, b ∈ {2, . . . , ω},

1. iab = min
{
i′ab,max{i′a1, i

′
1b}
}

,

2. j′ab = min
{
jab,max{ja1, j1b}

}
,

3. ia1 = k, (there is no internal path incident to v as it is isolated)

4. j′a1 = k. (there will be no new internal paths originating from u)

If G = ε(G′), then G is obtained from G′ by adding an edge e between vertices labeled 1 and 2.
Notice that ε(G′) = G′ ⊕ G′′ where G′′ is the boundaried graph which has only boundary vertices,
and its only edge is e. Thus, instead of dealing with the ε operator we can introduce two new null-like
operators that create a graph G isomorphic to G′′ with the edge e being red and blue, respectively.

13

• If e is red with cost c(e) then we set OPTI(G) = 0 (associated with F = ∅) for every I
whose entries are all of the form (k, jab) (the jabs can be anything in {0, 1, . . . , k}) except that
i12 = c(e). For all other Is we set OPTI(G) = −∞.

• If e is blue then we set OPTI(G) = 0 (associated with F = ∅) for every I whose entries are
all of the form (k, jab) (the jabs can be anything in {0, 1, . . . , k}).

In addition, we setOPTI(G) = p(e) for every I whose entries are all of the form (k, jab) except
that i12 = 0. This corresponds to setting F = {e}. For such a I , the price p(e) assigned to e
is determined as follows. Let P12 be the set of all ordered sequences of the form a1-a2-. . .-at

where every ai ∈ {1, 2, . . . , ω} is a unique boundary vertex, a1 = 1, at = 2, and 2 ≤ t ≤ ω

(if t = 2 then the path is simply 1-2). Every such sequence, together with e could close a cycle
when new internal paths will be added. We therefore set

p(e) = min
a1-...-at∈P12

max
2≤i≤t

jai−1ai

For all other Is we set OPTI(G) = −∞.

Unary operators that permute the labels of the boundary vertices are trivial to handle. They merely
represent a permutation of I .

Time Complexity. The composition operators require us to check every combination of at most
three different Is for compatibility. There are kω2

possible Is, so we need to check O(k3ω2
) combi-

nations. Each check requires at least O(ω2) time to read the Is.
The most time-consuming check is the one of the ε operator when it adds a blue edge e. This

might require figuring out p(e). Notice that |P12| < ω!, so we can perform the check in O(ω!) time.
The total complexity of the above algorithm is therefore bounded by O(k3ω2 · ω!) = mO(ω2).

Although the problem is polynomial for every constant value of ω, it is unclear whether there exists
a fixed-parameter algorithm of complexity O(f(ω)nc) for an arbitrary (possibly large) function f of
ω and a constant c. In fact, we conjecture that under reasonable complexity-theoretic assumptions,
such an algorithm does not exist.

References

[AF93] K. R. Abrahamson and M. R. Fellows. Finite automata, bounded treewidth, and well-
quasiordering. In Graph Structure Theory (ed. N. Robertson and P. Seymour), pages 539–564,
1993.

[Bak94] B. S. Baker. Approximation algorithms for NP-complete problems on planar graphs. J. ACM,
41(1):153–180, 1994.

[BGPW08] D. Bilò, L. Gualà, G. Proietti, and P. Widmayer. Computational aspects of a 2-player Stackelberg
shortest paths tree game. In Proc. 4th Workshop on Internet and Network Economics (WINE),
volume 5385 of Lecture Notes in Computer Science, pages 251–262. Springer-Verlag, 2008.

[BHK08] P. Briest, M. Hoefer, and P. Krysta. Stackelberg network pricing games. In Proc. 25th International
Symposium on Theoretical Aspects of Computer Science (STACS), pages 133–142, 2008.

14

[BKMK07] Glencora Borradaile, Claire Kenyon-Mathieu, and Philip N. Klein. A polynomial-time approxi-
mation scheme for Steiner tree in planar graphs. In Proc. 18th Annual ACM-SIAM Symposium on
Discrete Algorithms, 2007.

[Bod96] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput., 25:1305–1317, 1996.

[CDF+07] J. Cardinal, E. D. Demaine, S. Fiorini, G. Joret, S. Langerman, I. Newman, and O. Weimann. The
Stackelberg minimum spanning tree game. In Proc. 10th international Workshop on Algorithms
and Data Structures (WADS), volume 4619 of Lecture Notes in Computer Science, pages 64–76.
Springer-Verlag, 2007. To appear in Algorithmica.

[Cou08] B. Courcelle. Graph structure and monadic second-order logic: Language theoretical aspects.
In Proc. International Conference on Automata, Languages, and Programming (ICALP), volume
5125 of Lecture Notes in Computer Science, pages 1–13. Springer-Verlag, 2008.

[DHK09] Erik D. Demaine, MohammadTaghi Hajiaghayi, and Ken-ichi Kawarabayashi. Approximation al-
gorithms via structural results for apex-minor-free graphs. In Proc. 36th International Colloquium
on Automata, Languages and Programming (ICALP), 2009.

[DHM07] E. D. Demaine, M. Hajiaghayi, and B. Mohar. Approximation algorithms via contraction decom-
position. In Proc. 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
278–287, 2007.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, New York, 1979.

[GvLSU09] A. Grigoriev, J. van Loon, R. Sitters, and M. Uetz. Optimal pricing of capacitated networks.
Networks, 53(1):79–87, 2009.

[Kle05] Philip N. Klein. A linear-time approximation scheme for TSP for planar weighted graphs. In Proc.
46th IEEE Symposium on Foundations of Computer Science (FOCS), pages 146–155, 2005.

[Kle06] Philip N. Klein. A subset spanner for planar graphs, with application to subset TSP. In Proc. 38th
ACM Symposium on Theory of Computing (STOC), pages 749–756, 2006.

[LMS98] M. Labbé, P. Marcotte, and G. Savard. A bilevel model of taxation and its application to optimal
highway pricing. Management Science, 44(12):1608–1622, 1998.

[RSM05] S. Roch, G. Savard, and P. Marcotte. An approximation algorithm for Stackelberg network pricing.
Networks, 46(1):57–67, 2005.

[vH06] S. van Hoesel. An overview of Stackelberg pricing in networks. Research Memoranda 042, Maas-
tricht : METEOR, Maastricht Research School of Economics of Technology and Organization,
2006.

[vS34] H. von Stackelberg. Marktform und Gleichgewicht (Market and Equilibrium). Verlag von Julius
Springer, Vienna, 1934.

[VTL82] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series parallel digraphs. SIAM J.
Comput., 11(2):298–313, 1982.

15

	Introduction
	Planar Graphs
	Series-Parallel Graphs
	Definitions
	Series Compositions
	Parallel Compositions
	The Algorithm

	Bounded-Treewidth Graphs
	Definitions
	The Algorithm.

