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ABSTRACT
A property testing algorithm for a property Π in the bounded
degree graph model[7] is an algorithm that, given access to
the adjacency list representation of a graph G = (V,E) with
maximum degree at most d, accepts G with probability at
least 2/3 if G has property Π, and rejects G with probabil-
ity at least 2/3, if it differs on more than εdn edges from
every d-degree bounded graph with property Π. A property
is testable, if for every ε, d and n, there is a property testing
algorithm Aε,n,d that makes at most q(ε, d) queries to an
input graph of n vertices, that is, a non-uniform algorithm
that makes a number of queries that is independent of the
graph size.

A k-disc around a vertex v of a graph G = (V,E) is the
subgraph induced by all vertices of distance at most k from
v. We show that the structure of a planar graph on large
enough number of vertices, n, and with constant maximum
degree d, is determined, up to the modification (insertion or
deletion) of at most εdn edges, by the frequency of k-discs
for certain k = k(ε, d) that is independent of the size of
the graph. We can replace planar graphs by any hyperfinite
class of graphs, which includes, for example, every graph
class that does not contain a set of forbidden minors.

We use this result to obtain new results and improve upon
existing results in the area of property testing. In particular,
we prove that

• graph isomorphism is testable for every class of hyper-
finite graphs,

• every graph property is testable for every class of hy-
perfinite graphs,

• every property of hyperfinite graphs is testable in the
bounded degree graph model,
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• A large class of graph parameters is approximable for
hyperfinite graphs

Our results also give a partial explanation of the success
of motifs in the analysis of complex networks.

Categories and Subject Descriptors
F.2.2 [ Analysis of Algorithms and Problem Com-
plexity ]: Nonnumerical Algorithms and Problems;
G.2.2 [ Discrete Mathematics]: Graph Theory—Graph
algorithms
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1. INTRODUCTION
Given two planar graphs G1 = (V1, E1) and G2 = (V2, E2)

on n vertices whose maximum degree is bounded by a con-
stant d, can we decide whether the two graph are isomor-
phic? This problem is a special instance of the graph iso-
morphism problem, the complexity of which is not yet fully
understood (but which has a polynomial algorithm for k-
separable graphs, which include all graphs whose maximum
degree is bounded by a constant [11]). Assume we only want
to solve a relaxed version of the problem, where we are sup-
posed to accept the two graphs with probability at least 2/3
if they are isomorphic, and reject them if they have edit
distance more than εdn. Further assume that we are given
access to the adjacency list representation of the two graphs.
This puts this question into the framework of property test-
ing of bounded degree graphs, introduced in [7]. We show
that with the promise that the graphs, say, are planar1, the
answer is positive in a very strong sense. Namely, there is an
algorithm that for any ε, queries only a constant q = q(ε, d)
number of vertices in the graphs and gets the (at most) d
neighbors of every queried vertex. The algorithm accepts
with probability 2/3 two planar graphs that are isomorphic
while it rejects with probability 2/3 two planar graphs that
are ε-far from being isomorphic2.

1the class of planar graphs here can be replaced with any
hyper-finite class, which in turn, contains any class that is
defined by a set of forbidden minors
2ε-far here means that one needs to modify at least ε-fraction



A consequence of this main technical result, is that for any
graph property P, deciding whether a given planar graph has
P or is ε-far from having P, can be decided by q = q(ε, d)-
queries - a constant number of queries to the graph (inde-
pendent of the graph size). Combining this with a result
of Hassidim, Kelner, Nguyen, and Onak [8] (or Benjamini,
Schramm and Shapira [2]) this implies that a similar task
can be performed for arbitrary graphs of bounded degree,
if the studied property is planar, i.e. all graphs that have
the property are planar. The result can be extended to any
hyper-finite graph property. Previously, this was only known
for hereditary hyper-finite graph properties, which contain,
for example, all minor-closed graph properties [8] (see also
[2] for such a result for monotone graph properties).

Another immediate corollary of our result is that every
graph parameter, i.e. every function of a graph that has
the same value for isomorphic graphs, whose value changes
by at most a constant under insertion or deletion of one
edge, can be approximated up to an additive error of εdn for
bounded degree planar graphs, using only a constant num-
ber of queries to the input graph. Again the result can be
extended to any family of hyper-finite graphs. 3 Previously,
this was known only for specific functions like maximum
matching, minimum vertex cover, minimum dominating set
and maximum independent set [12, 8, 5].

In the next couple of paragraphs we briefly describe the re-
cent relevant developments in property testing of bounded
degree graphs. As already noted in [2], our understand-
ing of property testing in the dense graph model is much
better than that for the bounded-degree one. This is since
Szemerédi Regularity Lemma provides a ’constant-size’ de-
scription for any dense graph (up to changing ε|V (G)|2 of
the edges / non-edges) that is accurate enough to test any
testable graph property in that model [1]. For the bounded-
degree model, we do not have such theory.

On the other hand, it is clear what a constant query tester
can do: it can sample some constant number of vertices
from the graph, and explore a constant neighborhood around
these vertices. Then, the tester needs to make its decision
based on the local view it finds (and possibly its internal ran-
domness). Looking at the distribution such a tester induces
by its local coins on the sampled subgraphs, this means that
its decision is made by looking at the frequency of appear-
ance of constant size subgraphs in the graph. To understand
what properties can be tested in this model, one needs to
understand what the frequency of appearance of small sub-
graphs can tell us about the the whole graph. The first step
in this direction was done by Czumaj, Shapira and Sohler in
[4], where the authors showed that in planar graphs (again
this can be extended to more general families of graphs) test-
ing of hereditary graph properties can be reduced to testing
the occurrence of small connected induced subgraphs. The
break-through made by Benjamini, Schramm and Shapira
[2], was to prove that this local view already says enough
about the possibility of being planar (or not having any mi-

of the edges of each graph so that the resulting graphs be-
come isomorphic. We will refer to such algorithms as prop-
erty testing algorithms or testers, for short. See exact defi-
nitions in Section 2
3The algorithms for such approximations are non-uniform
in nature, hence have no uniformly bounded time complex-
ity. However, this is to be expected for a statement of this
generality.

nor from a set of forbidden ones). They show that any graph
which can be partitioned into small connected components
by removing εdn edges, has a significantly different distribu-
tion of certain constant sized subgraphs than graphs, which
are far from having such a partition. Their proof shows
that based on the local information, one can (randomly)
construct a global partition of the graph into small compo-
nents by removing at most εdn edges from the graph. As
a result they show that the membership in any monotone
hyperfinite property of graphs is testable in constant time.
In a follow-up work, Hassidim, Kelner, Nguyen, and Onak
[8] give an explicit algorithm to locally compute such a par-
tition. They prove that every hyperfinite hereditary graph
property is testable and also give a simpler proof for test-
ing minor-closed properties (a subclass of monotone graph
properties) and improve the running time of the test. Their
work uses a previous result by Nguyen and Onak, which
shows how to transform certain greedy algorithms into local
algorithms. Using the machinery of [8] we show that this
local view is sufficient for any property of planar graphs.

Our techniques heavily rely on the recent development in
the area of testing in the bounded degree model. In particu-
lar, we heavily use the local-partition oracles used implicitly
in [2], and explicitly in the later result by Hassidim, Kelner,
Nguyen, and Onak [8], which in turn is based on a technique
developed in [12]. Our main argument uses the probabilistic
method to show that two graphs that have a similar dis-
tribution of local neighborhoods are close to be isomorphic.
In order to do so, we consider two instances of a simple
sampling algorithm to estimate the frequency of connected
components in a partition provided by a local-partitioning
oracle [8]. We couple the randomness used by the two in-
stances to show that with positive probability they return
the same (good) estimate of these frequencies. Since the lo-
cal partitions can be obtained by removing, say εdn/3 edges
from each of the graphs, and since two graphs that consists of
small connected components with similar frequencies can be
transformed into each other by changing, say, εdn/3 edges,
it follows that the resulting graphs are ε-close.

We end this section by pointing at an interesting connec-
tion between the recent work in property testing and the
concept of motifs used in the analysis of complex networks
[10]. Motifs are subgraphs that occur significantly more fre-
quent in a given class of graphs than in a random graph.
They are used to classify certain classes of networks. To put
it differently, a motif is simply a heavy hitter (large entry) in
the histogram of constant sized subgraphs. A different view
of our result says that two graphs are close to be isomorphic
if their histograms of local neighborhoods are close. Thus,
such heavy hitters should be of high significance to the struc-
ture of the whole graph, at least, if the graph is hyperfinite.

The rest of this draft is organized as follows: Section 2,
contains basic notations, preliminary definitions and back-
ground on property testing. Section 3 contains the formal
description of the results. Sections 4, and 5 describe the
needed machinery from [8] along with an estimator for the
frequency vector of local neighborhoods. Section 6 contains
the proof of the main technical result and finally Section 7
contains the proofs of the corollaries of the main theorem,
along with an additional discussion.

2. NOTATIONS AND DEFINITIONS
In this paper we consider undirected labeled graphs with-



out self-loops. We use G = (V,E) to denote a graph with
vertex set V and edge set E. We write V (G) to denote
the vertex set of graph G, and will always assume that
V (G) = {1, . . . , n} for the graph G at hand. We will shortly
say that a graph is d-degree bounded, if its maximum degree
is at most d (here d = O(1) will be a constant that does not
depends on n, while the number of vertices n will tend to
infinity). A d-degree bounded graph will be represented by
its adjacency lists. This can be thought of an array of size
n × d in which the `-th row contains the names of the (at
most) d neighbors of the `-th vertex. This representation, in
the context of property-testing, is referred to as the bounded
degree model [7].

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are said
to be isomorphic, if there is a mapping Φ : V1 → V2 such
that (u, v) ∈ E1, if and only if (Φ(u),Φ(v)) ∈ E2. A graph
property is a (possibly infinite) collection of graphs, which
is closed under isomorphism.

Definition 1. Let G1 = (V1, E1) and G2 = (V2, E2) be
d-degree bounded graphs. The distance dist(G1, G2) is the
amount of edges that needs to be deleted and/or inserted from
G1 in order to make it isomorphic to G2. We say that G1, G2

are ε-far (or G1 is ε-far from G2) if dist(G1, G2) > εdn.
Otherwise, we say that they are ε-close.

Definition 2 (ε-far). Let Π be any (non-empty) graph
property on d-degree bounded graphs. A d-degree bounded
graph G = (V,E) is said to be ε-far from Π, if it is ε-far
from every G′ ∈ Π. If G is not ε-far from Π, it is said to be
ε-close to Π.

The notion of property testing was introduced by Rubin-
feld and Sudan [14] and then formally defined by Goldreich,
Goldwasser and Ron [6]. A property testing algorithm for
property Π, or, for short, property tester, in the bounded de-
gree graph model, is an algorithm that, given query access
to a graph G in the bounded degree graph model, accepts
every graph from Π with probability at least 2/3, and re-
jects every graph that is ε-far from Π with probability at
least 2/3. If the graph neither has property Π nor is ε-far
from Π, the algorithm can answer arbitrarily. A query4 in
this model is defined by a vertex v ∈ V (G) and the result
of a query is the set of the (at most d) vertices that are
the neighbors of v. The query complexity of a tester is the
number of queries for the worst case input (and worst case
random choices).

Definition 3 (Testable Graph Properties).
A graph property Π is called (non-uniformly) testable in the
bounded degree graph model with degree bound d, if there is
a function q = q(ε, d) such that for any 0 < ε < 1 and any
n ∈ N, there is a tester Aε,d,n for Π, whose query complexity
on graphs of n vertices is q.

2.1 Partitions and frequencies of subgraphs
For a graph G = (V,E), and a set S ⊆ V , we denote G[S]

the induced graph on S, namely the graph (S,E′) where

4A query in this model is usually for a vertex v ∈ V and a
number i, to which the i-th neighbor of v is returned in con-
stant time. If v has less than i neighbors, a special symbol is
returned to indicate this fact. For simplicity, for d = O(1),
we assume that a query just specifies a vertex v ∈ V , to
which the return is the set of all (at most d) neighbors of v.

E′ = {(u, v) ∈ E| u, v ∈ S}. For two sets A,B ⊆ V we
denote e(A,B)) = |{(u, v) ∈ E| u ∈ A, v ∈ B}|. We
shortcut e(S, S̄) by e(S). A partition of a set V is a set
of disjoint subsets of V whose union is V . For a partition
P = {C1, . . . , Cr} of V (G) we denote by G[P ] the graph
that is the union of G[Ci]. Note that G[P ] is disconnected
if r ≥ 2 and is obtained from G by deleting all edges whose
end points are in different partition classes.

A connected graph G = (V,E) with a specially marked
vertex v, is called rooted graph and we sometimes say that
G is rooted at v. A rooted graph G = (V,E) has radius k,
if every vertex in V has distance at most k from v. Two
rooted graphs G and H are isomorphic, if there is a graph
isomorphism between H and G that identifies the roots with
each other. We denote by N(k, d) the number of all non-
isomorphic rooted graphs with maximum degree at most d
and radius at most k. For a d-bounded degree graph G =
(V,E), an integer k and a vertex v ∈ V , let BG(v, k) be
the subgraph rooted at v that is induced by all vertices of
G that are at distance k or smaller from v. In particular,
BG(v, k) is a graph of radius at most k with root v. BG(v, k)
will be called the k-disc around v. The k-discs of G are all
possible BG(v, k), v ∈ V . Note that for bounded degree
graphs, the number of possible non-isomorphic k-discs is at
most N(k, d).

The main results here roughly state that knowing the
number of each type of disc in a planar graph (or even an
approximation of it) already determines, from the point of
view of property testing, the presence of any graph property
for that graph. To make this formal we use the following
definition.

Definition 4. For a d-bounded degree graph G = (V,E)
and integer k, let distG(k) be the distribution vector of all
k-discs of G. Namely, distG(k) is a vector of dimension
N(k, d), indexed by all possible rooted graphs of radius at
most k and degree at most d. Each entry of distG(k) corre-
sponds to some fixed rooted graph H, and counts the number
of k-discs of G that are isomorphic to H. Note that G has
n = |V | different discs, thus the sum of entries in distG(k)
is n. Let freqG(k) be the normalized distribution, namely
freqG(k) = distG(k)/n.

For vector v = (v1, . . . , vr) we will use ‖v‖1 =
∑r
i=1 |vi| to

denote its l1-norm. Note that for two vectors u = (u1, . . . , ur),
v = (v1, . . . , vr) representing distributions on r elements, i.e.
‖u‖1 = ‖v‖1 = 1, ‖v − u‖1, is exactly two times the vari-
ation distance between the two distributions. We say that
two unit-length vectors u, v are λ-close, if ‖u− v‖1 ≤ λ.

Finally to state our results we need the following definition
of hyperfinite graphs, which was introduced in [5]. We note
that all planar graphs, as well as any graph family that is
defined by a set of forbidden minors is hyperfinite.

Definition 5 (Hyperfinite). A graph G is called (ε, k)-
hyperfinite, if one can remove εn edges from G and obtain a
graph whose connected components have size at most k. For
a function ρ : R+ → R+ we call a collection of graphs ρ-
hyperfinite, if, for every ε > 0, every graph in the collection
is (ε, ρ(ε))-hyperfinite.

3. RESULTS
Our main technical tool is the following theorem.



Theorem 3.1. There exists functions ε3.1 = ε3.1(ε),
N3.1 = N3.1(ε, k, d), D3.1 = D3.1(ε, k, d), λ3.1 = λ3.1(ε, k, d)
such that for every 0 < ε < 1 and k ≥ 1 the following holds:
For every two (ε3.1, k)-hyperfinite graphs G1 = (V1, E1),
G2 = (V2, E2) on n ≥ N3.1 vertices and with maximum de-
gree at most d, if |freqG1(D3.1) − freqG2(D3.1)| ≤ λ3.1 then
G1 is ε-close to G2.

A corollary of Theorem 3.1 is the following theorem.

Theorem 3.2. Let C be a ρ-hyperfinite family of graphs
with maximum degree at most d. Then there is a function
s = s3.2(ε, ρ, d) such that for any 0 < ε < 1 there is a tester
Aε,d for graph isomorphism for two graphs in C whose query
complexity is s. Namely, the algorithm Aε,d has access to
two graphs G1, G2 ∈ C with |V1| = |V2|. It makes at most
s queries to G1 and G2 and accepts G1, G2 with probability
at least 2/3, if G1 is isomorphic to G2, and rejects with
probability at least 2/3 if G1 is ε-far from any isomorphic
copy of G2. If the function ρ is computable, then there is
also a uniform tester for graph isomorphism.

Our main technical theorem implies that every planar (or,
more generally, every hyperfinite) d-degree bounded graph
is determined up to εdn edges by the distribution of D-discs
(of certain size). For a fixed n and ε, we can represent a
property Π by the set of distribution vectors of the graphs
having Π. Then we can discretize the space and mark every
vector which has a nearby vector in Π. This way, we get
a finite representation of the property. An algorithm can
now simply estimate the frequency vector of the D-discs and
move to the nearest one in the discretized space. It accepts
if and only if this nearest frequency vector belongs to the
property. This leads to the following theorem.

Theorem 3.3. Let C be a ρ-hyperfinite family of graphs,
and P any graph property. The property P is testable for
any graph taken from C.

Finally, using the testability of a necessary condition for
hyperfiniteness in a similar way as in the tester for hereditary
properties from [8], this implies the following theorem.

Theorem 3.4. Let C be a ρ-hyperfinite family of graphs
that is closed under isomorphism, and P any graph property,
then for any graph in the bounded graph model, the property
of being in C and having P is testable.

Another immediate application of Theorem 3.3 is that of
approximating graph parameters. A graph parameter is an
integer function that maps graphs to a range {1, . . . ,m} and
that assigns the same value to isomorphic graphs. Examples
include the size of a maximum matching, a maximum cut
or independent set. We say that a graph parameter f is
∆-robust, if, for any G, f(G) changes by at most ±∆, if an
edge is added to or deleted from G. Let f be a ∆-robust
graph parameter for ∆ = O(1). Let P(`, ε) be the set of all
graphs G for which ` − εd|V | ≤ f(G) ≤ `. Since P(`, ε) is
a graph property, Theorem 3.3 asserts that P(`, ε) can be
tested using a constant number of queries for any hyperfinite
family of graphs. Thus an estimate of f(G) can be approxi-
mated to with in an additive error of εd|V | by testing P(`, ε)
for various `′s. Thus we get,

Theorem 3.5. Let C be a ρ-hyperfinite family of graphs of
bounded degree, and f be any O(1)-robust graph parameter.

Then for any 1 > ε > 0 there is a constant query complexity,
randomized algorithm, that approximates f(G) to within an
additive error of εd|V |, for any graph G = (V,E) ∈ C, with
probability at least 2/3.

4. ALGORITHMS FOR LOCAL GRAPH
PARTITIONING

Every graph taken from a hyperfinite family of graphs ad-
mits a partitioning into small connected components. To be
useful for property testing and sublinear approximation al-
gorithms, it would be nice if the features of such partitions
could be obtained by some local sampling. Indeed an oracle
to such a partition, that decides in constant time, for each
vertex, to which partition class it belongs, has been devel-
oped by Hassidim, Kelner, Nguyen, and Onak [8]. Also, an
earlier work of Benjamini, Schramm and Shapira[2] implic-
itly contains a way to construct such a local partitioning.
In the following we will explain the result of Hassidim et al.
in more details as their algorithm will be required for our
analysis.

The oracle is constructed by using a technique from [12]
that can be used to derive constant time algorithms from
certain greedy approximation algorithms. In [8] the authors
present a greedy algorithm to compute the desired partition,
which then can be made local using the technique from [12].
In this greedy algorithm, the vertices are considered in ran-
dom order π = (π1, . . . , πn). The algorithm greedily removes
components containing the current vertex πi (if this vertex
is still in the graph when it is considered by the algorithm).
Namely, if there exists a small connected set S of vertices
that contains πi that has a small cut to the rest of the graph,
this set will be cut out by the algorithm. Otherwise the sin-
gle vertex πi is cut out. More precisely, we call a set S ⊆ V
a (k, η)-isolated neighborhood of v ∈ V , if v ∈ S, the sub-
graph induced by S is connected, |S| ≤ k and e(S) ≤ η|S|.
With this definition, we can state the algorithm from [8] that
computes a partition of G.

GlobalPartitioning(k, η)
π = (π1, . . . , πn) = random permutation of V (G).
P = ∅,
while G is not empty do

Let v be the first vertex in G according to π
if there exists a (k, η)-isolated neighborhood of v in G

then S = this neighborhood
else S = {v}
P = P ∪ {S}
Remove vertices in S from the graph

Note that the random permutation of the vertices deter-
ministically defines the partition. We thus denote this par-
tition as P(π). The partition, of course, depends also on η
and k, but these parameters will be taken to be fixed in the
context of use. For any run, namely choice of π, the con-
nected components in such a partition are of size at most
k. If in addition at most εn edges are cut, we say that the
partition is an (ε, k)-partition.

It is proved in [8] that applying the randomized algorithm
above for G, taken from a ρ-hyperfinite family of graphs,



with proper choice of η and k as functions of ε, results, with
probability at least 9/10, in an (εd, k)-partition.

If we are to make only few queries to the graph, we need
a more local view of such partitions. This motivates the fol-
lowing definition of [8]. Recall that in this paper a query of
a graph vertex v ∈ V (G) returns all of the neighbors of v.
This is geared towards property testing in the bounded de-
gree graph model, in which such a query can be implemented
in O(1) queries and time.

Definition 6. [8] We say that O is a (randomized) (ε, k)-
partitioning oracle for a class C of graphs, if, given query
access to a graph G = (V,E), it provides query access to
a partition P of V . For a query about v ∈ V , O returns
P[v]; the ’name’ of the partition class that contains v. The
partition has the following properties:

• P is a function of the graph and random bits of the
oracle. In particular, it does not depend on the order
of queries to O.

• For every v ∈ V , |P[v]| ≤ k and P[v] induces a con-
nected graph in G.

• If G belongs to C, then |{(v, w) ∈ E : P[v] 6= P[w]}| ≤
ε|V | with probability 9/10.

It is shown in [8] how to implement the global partition
above locally, so to result in a local partition oracle. In order
to do so, one issue is to simulate locally a random permu-
tation. This is done as follows. Each vertex is assigned a
random priority from [0, 1], independently of any other ver-
tex. Thus this defines a random map π : V 7→ [0, 1]. Such
a map naturally defines a permutation on V by taking the
vertices according to increasing priorities5. The advantage
of computing such a random ordering is that one can select
the priority at random whenever access to a vertex (and its
priority) is required. In what follows we will identify such a
map π with the random permutation on V that is associated
with it.

The local computation of a random map π as above can
be used to locally construct the partition class of a queried
vertex v in the following way: We explore the 2k-disc around
v and whenever we encounter a new vertex whose priority
has not been fixed, we choose its priority uniformly at ran-
dom from [0, 1]. If v has lowest priority among all discovered
vertices in the neighborhood, we know that it would be cut
out by the algorithm GlobalPartitioning, first in his k-disc.
Hence, this operation cannot affect vertices that have been
cut out earlier in other places of the graph. Indeed, any
vertex u with lower priority must have a distance of more
than 2k from v and cutting out vertices never decreases dis-
tances, so any k-neighborhood of u cannot intersect any k-
neighborhood of v. Otherwise, if the neighborhood around
v does contain a vertex u with π(u) < π(v), then we recurse
by moving to u with the smallest priority.

We note that for every permutation π the local partition
oracle is consistent with the partition produced by the al-
gorithm GlobalPartitioning above, for the same π (and the
same ε and k). It is proved in [8] that the expected number
of queries (namely the recursion depth) is bounded for hy-
perfinite graphs. This is summed up in the following lemma,

5if two vertices are mapped to the same value, then the per-
mutation is not well defined, but this occurs with probability
0, hence will be disregarded.

which is a slight variation of the lemma stated in [8] (see also
[13]).

Lemma 4.1. [8] Let G be an (ε3/54000, k)-hyperfinite graph
with degree bounded by d ≥ 2. Then there is an (εd, k)-
partitioning oracle with the following properties: If the oracle
is asked q non-adaptive queries, then with probability 1− δ,
the oracle makes q

δ
· 2d

O(k)

queries to the input graph. The
time complexity for computing the answers to the q queries

is bounded by q
δ

log q
δ
· 2d

O(k)

.

5. ESTIMATING THE FREQUENCY VEC-
TOR OF A GRAPH

For our testers, as well as for the proof, we need to approx-
imate the frequencies of the D-discs with radius bounded by
D = D3.1(ε, d) in a graphG = (V,E). Let {H1, . . . , HN(D,d)}
denote the set of all d-bounded degree rooted graphs with
radius at most D (in particular this includes all D-discs that
are isomorphic to the D-discs of a particular d-bounded de-
gree graph). We assume that Hi corresponds to the i-th
entry in the frequency vector freqG(D), i.e. the entry gives
the relative frequency of Hi in G. The vector freqG(D) can
be estimated to within additive error ±λ by sampling a con-
stant number of vertices and exploring the D-discs around
them.

Lemma 5.1. Let G be d-degree bounded, and s ≥ N(D,d)2

λ2 ·
ln(20N(D, d)). The algorithm EstimateFrequencies be-
low samples s vertices uniformly at random, explores their
D-discs and with probability at least 9/10 returns a vector

f̃reqG(D) with ‖f̃reqG(D)− freqG(D)‖1 ≤ λ.

EstimateFrequencies(G = (V,E), D, s)

f̃reqG(D) = 0
sample s vertices u1, . . . , us uniformly at random
for j = 1 to s do

explore the D-disc around uj , let Hi be the
resulting induced rooted subgraph

set f̃reqG(D)[i] = f̃reqG(D)[i] + 1
s

return f̃reqG(D)

Proof. Let Xi,j be the indicator random variable for the
event that the D-disc BG(uj , D) is isomorphic to Hi. We
observe that this event happens with probability freqG(D)[i].
This implies that E[Xi,j ] = freqG(D)[i] and E[

∑s
j=1Xi,j ] =

s · freqG(D)[i]. Furthermore, we have E[f̃reqG(D)[i]] = 1
s
·

E[
∑s
j=1Xi,j ] = freqG(D)[i].

Using Chernoff bounds we get for every i,

Pr[|f̃reqG(D)[i]− freqG(D)[i]| ≤ λ/N(D, d)]

= Pr[|
s∑
j=1

Xi,j −E[

s∑
j=1

Xi,j ]| ≤
λ

N(D, d)
· s]

≤ 2e
−2 λ2

N(D,d)2
s

≤ 1

10N(D, d)

By the union bound we get that with probability at least

9/10 for every i, |f̃reqG(D)[i] − freqG(D)[i]| ≤ λ/N(D, d).

This implies that ‖f̃reqG(D)− freqG(D)‖1 ≤ λ.



We end up this section with the following note: In the
same way that the algorithm EstimateFrequencies can
estimate the frequency vector of G, it can be used as well to
estimate the frequency vector of the connected components
of G[P], the (εd, k)-partition that is defined by an (εd, k)-
partitioning oracle with random permutation π. One can
just apply it on G[P] with D = k, and for each query to
a vertex u and the exploration of the k-disc around it, one
just runs the partition oracle that provides access to G[P], as
asserted by Lemma 4.1. Namely, each query in the frequency
estimate is done by calling the partition oracle. Note that
these queries are non-adaptive, and hence the guarantees
of Lemma 4.1 hold. Since every connected component in
G[P] has diameter at most k, we know that every k-disc
corresponds to a connected component of G[P].

This is formally stated in the following Lemma.

Lemma 5.2. For every choice of constants ε, λ with 0 <
ε, λ < 1 and every k ≥ 1, there are values ε5.2 = ε5.2(ε),
D5.2 = D5.2(ε, k, d), s5.2 = s5.2(ε, λ, k, d) and a random-
ized algorithm Sampler, that on a random permutation π
(given as a priority vector), accesses the graph G by query-
ing independently s5.2 random vertices of G and exploring
the D5.2-discs around them. The algorithm outputs a fre-
quency vector f̃ . If the input graph G is (ε5.2, k)-hyperfinite
and with degree bound d ≥ 2, then with probability at least
4/5 (over the choices of π and the internal coins of the al-
gorithm) the following two events occur.

1. The partition P(π) defined by algorithm GlobalPar-
titioning with parameters ε5.2, k, and using the per-
mutation π as its random permutation, is an (εd, k)-
partition.

2. The output vector f̃ approximates the frequency vector
f of the k-discs in G[P(π)]. Namely, we have |f̃ −
f |1 ≤ λ.

We note that the Lemma asserts the existence of a ran-
domized algorithm (the “sampler”) whose output is a fre-

quency vector f̃ = f̃(π, S), that depends on the internal
randomness: the random permutation π and the sampled s-
sequence of vertices S, where an s-sequence of vertices from
V is just a member of V s, and s = s5.2. This frequency
vector estimates the frequency vector of the partition P(π)
that is defined only by π, and that is an (εd, k)-partition
with high probability (over choices of π). The probability in
the lemma is with respect to both choices of π and S.

We also note that we never need in our testers to apply the
algorithm Sampler of Lemma 5.2. However, the existence
of such an estimator is crucial for the proof of our main
Theorem.

6. PROOF OF THEOREM 3.1
Let 0 < ε < 1, k ≥ 1 and let us define the functions from

Theorem 3.1 as follows: ε3.1(ε) := ε5.2( ε
4
), D3.1(ε, k, d) :=

D5.2( ε
4
, k, d), and s3.1(ε, k, d) := s5.2( ε

4
, ε
4
, k, d). Further de-

fine λ3.1 := 1
10s3.1

. Let ε3.1 = ε3.1(ε), D3.1 = D3.1(ε, k, d),

and s3.1 = s3.1(ε, k, d). Let G1 = (V1, E1), G2 = (V2, E2) be
two (ε3.1, k)-hyperfinite graphs with V1 = V2 = {1, . . . , n}
and for which freqG1(D3.1) and freqG2(D3.1) are λ3.1-close,
as in the premise of Theorem 3.1. We start with the fol-
lowing observations, which are true for any values of k,D, λ
and in particular for the ones chosen here.

Claim 6.1. Let D ≥ 0 be an integer and 0 < λ < 1. If
freqG1(D) and freqG2(D) are λ-close then there is a bijection
Ψ : V1 7→ V2 such that for all v ∈ V1, but a λ-fraction of the
vertices, BG1(v,D) is isomorphic to BG2(Ψ(v), D).

Proof. By greedily mapping v to u if their D-discs are
isomorphic, independent of previous choices.

Claim 6.2. Let k ≥ 1 be an integer and let 0 < λ < 1.
Let G∗1 and G∗2 be two d-bounded degree graphs on n vertices
whose connected components have size at most k and whose
frequency vectors freqG∗1

(k) and freqG∗2
(k) are λ-close. Then

G∗1 and G∗2 are λ-close.

Proof. Map greedily connected components of G∗1 to iso-
morphic ones in G∗2, until this is no longer possible, and
then extend the map to a bijection between the remaining
subsets of vertices arbitrary. By definition, only λ-fraction
of the vertices will be mapped to images on which the 1-
neighborhoods do not agree. By the bounded degree as-
sumption the claim follows.

The top level view of the proof is as follows. Since G1, G2

are both (ε3.1, k)-hyperfinite (and we may assume ε3.1 ≤ ε
4
),

we know that they have ( εd
4
, k) partitions, P1,P2, respec-

tively. Thus, (by definition of ( εd
4
, k) partition) G∗i = Gi[Pi]

is ε
4
-close to Gi, i = 1, 2. Moreover, since ε3.1 = ε5.2( ε

4
),

Lemma 5.2 guarantees that the global partition algorithm
yields such partitions with high probability when applied
with a random permutation (independently for G1, G2). We
will show (this will be the main technical part, and only
here we need to resort to the assumption that freqG1(D3.1)
and freqG2(D3.1) are λ3.1-close) that for certain such parti-
tions P1,P2, for G1, G2 respectively, the frequency vectors
freqG∗1

(k) and freqG∗2
(k) are ε

2
-close, where G∗1 = G1[P1] and

G∗2 = G2[P2]. Hence, by Claim 6.2 it follows that G∗1 is ε
2
-

close to G∗2. Composing this with the fact that Gi is ε
4
-close

to G∗i , i = 1, 2 implies that G1 is ε-close to G2.
To exhibit the existence of the corresponding partitions
P1,P2, we first construct P1 by using the local partition
oracle, for parameters ( εd

4
, k), whose existence is asserted by

Lemma 4.1 and that is accessed by algorithm Sampler from
Lemma 5.2. The parameters k3.1, D3.1 and s3.1 are chosen
such that the sampler in Lemma 5.2 runs with parameters
k5.2 = k3.1, D5.2 = D3.1 and s5.2 = s3.1, and will output
a good estimate f̃1 of the real frequency vector f1, of that
partition. Namely, the sampler in Lemma 5.2 makes a non
adaptive sample of s3.1 random vertices, chooses a random
permutation π on V1, and constructs the output vector f̃1
based only on the the D3.1-discs around each of the sampled
vertices and their relative order according to π. The output
vector is so that |f1 − f̃1|1 ≤ ε

4
.

Thus the partition P1(π) is a random partition that de-

pends on the random permutation π, and the estimate f̃1
depends on π and the s3.1 sampled points. We will now hope
that a run of the sampler on G2 will produce an estimate
f̃2 with the analogous guarantees. Moreover, we hope to
arrive at the situation where f̃1 = f̃2. This seems unlikely,
since the estimate depends crucially on the local random
choices, as explained above, and thus there is no reason to
expect that f1 will be any close to f2 even if the graphs were
isomorphic.



Now, to construct P2, so that the sampler will give a close
output to its output for P1 on G1, recall that by assumption,
freqG1(D3.1) and freqG2(D3.1) are λ3.1-close. Thus by Claim
6.1 there is a bijection that maps most vertices of G1 to
vertices of G2 with corresponding isomorphic discs. Fix such
a bijection Ψ : V1 7→ V2 as asserted in Claim 6.1. The
existence of Ψ means that for a random vertex sampled in
G1, there is with high probability, a corresponding vertex
in G2 so that the corresponding local discs are isomorphic.
If we could coordinate the random choices for the sampler
run on G2 with those for G1 via the mapping Ψ, we would
essentially be done, as the local views will be the same, and
hence the output must be the same.

This suggests the following strategy. Recall that the sam-
pler in Lemma 5.2 uses a permutation π on V (G) that is
distributed uniformly at random and a s3.1-sequence of ver-
tices S ∈ V (G)s3.1 which is distributed uniformly at random

(on V (G)s3.1) and independent of π. Its output f̃ depends
on π and S deterministically. Thus the run of the sampler
on some arbitrary graph G can be viewed as using a sample
from the product space Q×Π, where Q is the set of all s3.1-
sequences and Π is the set of all permutations of {1, . . . , n}.

Let Qi × Πi, i = 1, 2 be the corresponding spaces for
G1, G2. We will define a bijection Φ : (Q1×Π1) 7→ (Q2×Π2).
Observe that every bijection has the property that the uni-
form distribution on Q1 × Π1 induces, under Φ, the uni-
form distribution on Q2×Π2. Thus given the random input
(S, π) ∈ Q1 × Π1 for the run on G1, we can use Φ(S, π) as
the random input for the run on G2, and from the point
of view of the stand-alone algorithm run on G2 this is a le-
gitimate run. Hence, the sampler will produce a legitimate
estimate f̃2 of a corresponding partition on G2. We will
make sure (with high probability), using this coupling be-
tween the runs, that the local view defined by (S, π) on G1

is isomorphic to the view defined by Φ(S, π) on G2. Hence,
both runs of the algorithm have the same local view and so
they will produce the same output.

We now formally define the bijection Φ : (Q1 × Π1) 7→
(Q2×Π2) and present the whole proof. As a starting point,
we fix a bijection Ψ : V1 7→ V2 as asserted in Claim 6.1 for
λ = λ3.1 and D = D3.1. This bijection has the property
that, for most vertices v, the D3.1-disc BG1(v,D3.1) rooted
at v in G1 is isomorphic to the D3.1-disc BG2(Ψ(v), D3.1)
rooted at Ψ(v) in G2. This implies that if we pick an s3.1-
sequence of vertices (v1, . . . , vs3.1) from V1, then the local
view of the corresponding D3.1-discs in G1 is typically the
same as that of (Ψ(v1), . . . ,Ψ(vs3.1)) in G2. This moti-
vates the following definition of Φ acting on the first co-
ordinate. Namely, abusing notation, for S = (v1, . . . vs3.1)
we define Ψ(S) = (Ψ(v1), . . .Ψ(vs3.1)) ∈ Q2 and define
Φ(S, .) = (Ψ(S), .). Since Ψ is a bijection, it follows that
for a uniformly distributed S ∈ Q1, the projection of Φ on
its first coordinate induces the uniform distribution on Q2.

Now recall that the output of algorithm Sampler does
not only depend on the D3.1-discs of the sampled vertices,
but also on the relative ordering that the permutation π
induces on the sampled vertices. If we can define Φ in such
a way, that not only the sampled vertices and their images
have isomorphic D3.1-discs, but also the relative ordering
according to a random permutation π and its image under
Φ is identical, we are done. Although, we won’t be able to
guarantee this for every pair ((S, π),Φ(S, π)), we will still
succeed to show this for most pairs.

In order to define how Φ acts on the second coordinate,
we will define for every s3.1-sequence S a bijection φS :
V1 → V2. This bijection is supposed to map, for every
1 ≤ i ≤ s3.1, the vertices inside the D3.1-disc around sample
vertex vi in G1 to the corresponding vertices in the cor-
responding D3.1-discs around sample vertex Ψ(vi) in G2.
In particular, it is supposed to map vi to Ψ(vi). How-
ever, a mapping as described above cannot always be done.
Imagine, for example, the situation in which the D3.1-discs
BG1(v1, D3.1) and BG1(v2, D3.1) are disjoint in G1 but the
D3.1-discs BG2(Ψ(v1), D3.1) and BG2(Ψ(v2), D3.1) are not
disjoint in G2. In this case, it may not be possible to extend
certain orderings for the vertices in G1 to an ordering of the
vertices in G2 such that the relative orderings among the
vertices of BG1(v1, D3.1) and BG1(v2, D3.1) agree with that
of BG2(Ψ(v1), D3.1) and BG2(Ψ(v2), D3.1). If for a given
sample set and Ψ we cannot define a bijection φS with the
desired properties, we will use an arbitrary bijection.

Let us continue now to define φS . Abusing notation, for
a permutation π = (π1, π2, . . . , πn) let us define φS(π) =
(φS(π1), φS(π2), . . . , φS(πn)) to be the sequence that is ob-
tained by identifying every vertex from π with its image
under φS . Then we can define Φ(S, π) = Φ(Ψ(S), φS(π)).
Since, for every S, φS is a bijection, it follows that Φ is a
bijection.

It remains to describe the construction of φS . Let us fix
S. We first consider the situation, where

• the D3.1-discs {BG1(vi, D3.1), i = 1, . . . , s3.1} are pair-
wise disjoint,

• the D3.1-discs {BG2(Ψ(vi), D3.1), i = 1, . . . , s3.1}, are
pairwise disjoint, and

• the D3.1-discs BG1(vi, D3.1) and BG2(Ψ(vi), D3.1) are
isomorphic for each 1 ≤ i ≤ s3.1.

Let ΓS : ∪s3.1i=1 {BG1(vi, D3.1)} 7→ ∪s3.1i=1 {BG2(Ψ(vi), D)}
be an isomorphism that, for each i with 1 ≤ i ≤ s3.1,
maps the root of the D3.1-disc BG1(vi, D3.1) to the root of
BG2(Ψ(vi), D3.1). We extend ΓS arbitrarily to a bijection
between V1 and V2. This extension will be our function φS .
By construction, φS will identify every vertex in a D3.1-disc
BG1(vi, D3.1) with the corresponding vertex of the D3.1-disc
BG2(Ψ(vi), D3.1).

To finish our construction, let us consider the case when
at least one of the three conditions above is not satisfied
by S. In this case, we define φS to be an arbitrary bi-
jection between V1 and V2. We will see below that this
case happens only with small probability. Finally, Φ(S, π) =
Φ(Ψ(S), φS(π)).

Claim 6.3. The map Φ : Q1 × Π1 7→ Q2 × Π2 has the
following properties.

1. The projection of Φ on its first coordinate is a bijection
from Q1 to Q2, and the projection of Φ on its second
coordinate, for any given S, is a bijection between Π1

to Π2.

2. For a pair (S, π) chosen uniformly at random from
Q1 × Π1, the map Φ(S, π) induces a pair that is dis-
tributed uniformly on Q2 ×Π2.

3. Let (S, π) ∈ Q1×Π1 be a pair for which the D3.1-discs
around vi, i = 1, . . . , s3.1, as well as the D3.1-discs



around Ψ(vi), i = 1, . . . , s3.1, are pairwise disjoint.
Assume, in addition, that BG1(vi, D3.1) is isomorphic
to BG2(Ψ(vi), D3.1), i = 1, . . . , s3.1. Then, there
is an isomorphism φS between the subgraphs H1 =
∪s3.1i=1BG1(vi, D3.1) and H2 = ∪s3.1i=1BG2(Ψ(vi), D3.1) that
maps the roots of the D3.1-discs in G1 to the corre-
sponding roots in G2. In addition, the relative order
on the vertices of H1 that is defined by π is identical to
the relative order on the vertices in H2 that is defined
by φS(π) under that isomorphism.

Proof. The first and third items are by the definition of
the construction. The second item follows directly from the
first item.

With the bijection Φ between the probability spaces we
define the coupling between the runs of the sampler for G1

and G2, naturally, in the following way: If, for graph G1, the
sampler chooses permutation π and samples a s3.1-sequence
S, then the randomness for the run on G2 is Φ(S, π).

We next define the following five events on the probability
space Π1 ×Q1.

(A1) for all 1 ≤ i < j ≤ s3.1 the discs BG1(vi, D3.1) and
BG1(vj , D3.1) are disjoint.

(A2) for all 1 ≤ i < j ≤ s3.1 the discs BG2(Ψ(vi), D3.1) and
BG2(Ψ(vj), D3.1) are disjoint.

(A3) for all 1 ≤ i ≤ s3.1 the discs BG1(vi, D3.1) and
BG2(Ψ(vi), D3.1) are isomorphic.

(B1) The two events asserted by Lemma 5.2, for the pair
(ε, λ) in Lemma 5.2 set to ( ε

4
, ε
4
) and k set to k3.1,

occur for G1. Namely, the partition P1 = P(π) on G1

is an ( εd
4
, k3.1)-partition, and the estimate f̃1 computed

by the sampler run on G1 is ε
4
-close to f1, where f1 is

the frequency vector of G1[P1] on k3.1-discs.

(B2) The two events asserted by Lemma 5.2, for the pair
(ε, λ) in Lemma 5.2 set to ( ε

4
, ε
4
) and k set to k3.1,

occur for G2. Namely, the partition P2 = P(φS(π))

on G2 is an ( εd
4
, k3.1)-partition, and the estimate f̃2

computed by the sampler run on G2 is ε
4
-close to f2,

where f2 is the frequency vector ofG2[P2] on k3.1-discs.

We will show in Claim 6.5 that with high probability all
five events occur simultaneously. We then end the proof by
the following Claim.

Claim 6.4. If the events A1, A2 and A3 are satisfied, then
the corresponding coupled runs of the Sampler on G1 and G2

return the same estimate vector f̃ .

Proof. Let (S, π) be the random choice of the sampler of
Lemma 5.2, for the pair ( ε

4
, ε
4
) and input G1. Let (S′, π′) =

Φ((S, π)) be the randomness for a run on input G2. Let H1

be the union of the discs BG1(vi, D3.1) for all 1 ≤ i ≤ s3.1
and let H2 be the union of the discs BG2(v′i, D3.1) for all 1 ≤
i ≤ s3.1. The occurrence of events A1, A2 and A3 implies
that H1 and H2 are isomorphic graphs and that there is an
isomorphism that maps the roots of the corresponding D3.1-
discs to each other. Let this isomorphism be ΓS : V (H1) 7→
V (H2). Further, by item 3. in Claim 6.3, the relative order
induced by π on V (H1) is identical to the order that φS(π)

induces on V (H2) under the map ΓS . We conclude that
the runs on G1, G2 see isomorphic views and so they must
return the same vector (Note that it may happen with small
probability that the discs are not large enough to determine
the partition locally. In this case, we just need to assume
that the runs behave similarly).

Assuming we have proved that all the events: A1, A2, A3
and , B1, B2 hold, we formally end the proof of the theorem,
following the high level explanation, as follows.

Since all events hold simultaneously with positive proba-
bility, there is a pair in the probability space for which all
events hold. Let (S, π) be such a pair. Since A1, A2, A3
occur, Claim 6.4 asserts that both runs compute the same
estimate f̃ . The fact that B1 holds for G1 implies that
the partition P(π) is an ( εd

4
, k3.1)-partition and that G∗1 =

G1[P(π)] has frequency vector of the connected components

f1 = freqG∗1
(k3.1) that is ε

4
-close to f̃ . Similarly, the fact

that the event B2 holds implies the same statement for
G∗2 = G2[P(φS(π))] with a frequency vector f2. Hence
we conclude, by Claim 6.2 that G∗1 is 2 ε

4
-close to G∗2. Fi-

nally, again by B1, B2, the partitions P(π) and P(φS [π])
are ( εd

4
, k)-partitions, which in particular implies that G1 is

ε
4
-close to G∗1 and G2 is ε

4
-close to G∗2. Combining this to-

gether with the fact that G∗1, G
∗
2 are ε

2
-close implies that G1

is ε-close to G2.

Claim 6.5. Let G1, G2, and Φ fixed as above. There is
a function = N(ε, ρ, d) (independent of G1, G2 and Φ) such
that for n ≥ N the events A1, A2, A3 and B1, B2 are simul-
taneously satisfied with probability at least 3/10.

Proof. We show that each event holds with high enough
probability and then use the union bound to conclude the
assertion of the claim.

The probability that for a vertex v that is chosen uni-
formly at random from V1, BG1(v,D3.1) is not isomorphic
to BG2(Ψ(v), D3.1) is at most λ3.1, by Claim 6.1 and our
choice of λ3.1. Therefore, the probability for event A3 not
to hold is at most λ3.1 · s3.1 ≤ 1/10.

If regarded as stand-alone algorithms, i.e. without the
coupling, both instances of the sampler of Lemma 5.2 sample
s3.1 vertices uniformly at random from the corresponding
graphs. The value of s3.1 as well as the maximum number
of vertices in any 2D3.1-discs do not depend on n. Therefore,
the probability that any two D3.1-discs intersect goes to 0 as
n goes to infinity. Hence, there is a value of N = N(ε, k, d)
such that for all graphs with n ≥ N vertices, the probability
of events A1 on G1 and similarly A2 on G2 not to occur is
at most 1/10.

Now, for each of G1, G2 separately, again, viewing the
sampler run as a stand alone algorithm, Lemma 5.2 asserts
that the sampler produces an estimate f̃i, i = 1, 2 for a par-
tition P(π) that is a an ( εd

4
, k)-partition, each with prob-

ability 4/5. Hence, the events B1 and B2 each fail with
probability 1/5.

By summing up the failure probabilities the union bound
yields that the overall failure probability is at most 7/10 and
so all events hold with probability at least 3/10.

Choosing N3.1 = N as in Claim 6.5 finishes the proof of
Theorem 3.1.



7. PROOFS OF THEOREMS 3.2, 3.3
AND 3.4

Proof Of Theorem 3.2,. Let G1, G2 be two graphs on
n vertices taken from a ρ-hyperfinite family, of bounded de-
gree d. For 0 < ε < 1 let ε3.1 = ε3.1(ε), N = N3.1(ε, k, d),
D = D3.1(ε, k, d), λ = λ3.1(ε, k, d) from Theorem 3.1 and
k = ρ(ε3.1). If n < N then we can query all edges in G1

and G2 and solve the isomorphism problem exactly. So,
let us assume that n ≥ N . In this case, since G1, G2 are
from a ρ-hyperfinite family of graphs, they are also (ε3.1, k)-
hyperfinite. Hence, Theorem 3.1 can be applied. We can
apply the estimator EstimateFrequencies of Section 5,
with parameters D and λ/4, to output the frequency vec-

tors f̃reqGi(D), i = 1, 2. By Lemma 5.1, with probability
at least 4/5 both these vectors are λ/4-close to the real fre-
quency vectors of the graphs G1, G2 respectively.

We then check if |f̃reqG1(D) − f̃reqG2(D)|1 ≤ λ/2. We
accept if it is, and reject if the distance between the vectors
is more than λ/2.

Suppose the graphs are isomorphic. Then obviously their
corresponding frequency vectors are identical. Hence, with
probability at least 8/10 the distance we will observe be-
tween the estimates is at most λ/2 and the tester will ac-
cept.

Assume now that the graphs are ε-far from being isomor-
phic. We will show that the tester rejects with high proba-
bility. Indeed, assume that the tester accepts. This happens
only if the distance between the estimates is at most λ/2,
which implies that with probability at least 8/10, the dis-
tance between the true frequency vectors is at most λ (by
Lemma 5.1). But then, Theorem 3.1 implies that G1 and G2

are ε-close to isomorphic, contrary to the assumption. Thus
the tester accepts with probability at most 2/10.

Proof Of Theorem 3.3, Sketch:. Let C be ρ-hyperfinite
family of d-bounded degree graphs. Let 0 < ε < 1 and ε3.1 =
ε3.1(ε), N = N3.1(ε, k, d), D = D3.1(ε, k, d), λ = λ3.1(ε, k, d)
from Theorem 3.1 and k = ρ(ε3.1). To define an ε-test for
graphs of size n we define the following set (which might be
infeasible to construct, but is well defined). Let FP(n,D) =
{freqG(D), G ∈ C∩P, |V(G)| = n} be the set of all possible
frequency vectors of graphs of size n that are in C and have
P6.

As in the previous proof it suffices to consider the case
n ≥ N as in the other case we can query the whole graph.
The test for a graph G ∈ C, is to apply the estimator Es-
timateFrequencies of Section 5, with parameters D and

λ/2. The estimator will output a frequency vector f̃reqG(D).
By Lemma 5.1, with probability at least 9/10, this vector is
λ/2-close to the real frequency vector of G. We then check

if f̃reqG(D) is λ/2-close to some vector in FP(n,D). We
accept if it is and reject otherwise.

Obviously, if G has P then its frequency vector will be in

FP(n,D) and since ˜freqG(D) is λ/2-close to freqG(D) with
probability at least 9/10, the test will accept G (with that

6instead of the whole set, we can take a constant size set
that forms a δ′-net for FP(n,D). This does not change the
non-uniformity nature, and the possible large time required
to construct such a set. However, once it is constructed, it
has only a constant size, hence the test for each n is given
by a constant size table.

probability). On the other hand, if the test accepts G, then
with probability at least 9/10, freqG(D) is λ-close to some
vector f ∈ FP(n,D). By definition, this vector f is the
frequency vector of some graph G′ on n vertices in P ∩ C,
namely, f = freqG′(D). But then, since the input graph is
(ε3.1, ρ(ε3.1))-hyperfinite, Theorem 3.1 implies that G is ε-
close to G′. This means that G is ε-close to P as needed.

Proof Of Theorem 3.4, Sketch:. The proof is very
similar to the previous one. The only difference is that
we now do not have the promise that G comes from a ρ-
hyperfinite family of graphs. However, we know that the
tested property is the intersection of some ρ-hyperfinite fam-
ily with some other property. Hence, we can safely reject
graphs, which are not ρ-hyperfinite. Our goal will be to ac-
cept with probability at least 9/10 if the graph comes from
a ρ-hyperfinite family of graphs and to reject with proba-
bility at least 9/10, if the graph is not (ε3.1, k)-hyperfinite
for a value of k determined below. A similar test has been
used in [8] in their property testing algorithm for hereditary
hyperfinite properties. For k = ρ(ε33.1/(8 · 54000)), this is
done by applying the local partitioning oracle using param-
eters ε3.1/2 and ρ(ε3.1/2) and querying for random edges to
estimate the number of edges between the partition classes.
If this estimated number of edges is larger than 3

4
ε3.1dn, the

algorithm rejects.
Thus, if the tester passes the first test, we know that it is

(ε3.1, k)-hyperfinite, with high probability. So we can per-
form the test as in the proof of Theorem 3.3 and accept
whenever this test accepts. The overall failure probability
of the tester is at most 4/5.

8. ADDITIONAL DISCUSSION
In view of the grand goal of the characterization of all

graph properties that are testable in the bounded-degree
graph model, and the discussion in the introduction, we
note that all the testable properties that we are aware of,
fall into one of the following categories: (a) the properties
of hyperfinite classes, namely that are covered by Theorem
3.47. (b) properties that are defined by their local struc-
ture: e.g., being triangle-free. Such properties are testable
for every bounded degree graph. (c). combinations of the
above by simple boolean operators that ’preserve’ the dis-
tance (e.g., the union of a property from (a) and a property
of type (b)). (d) - other properties, such as, the property of
having between d/4 to d/2 edges. Another such property is
connectivity.

The last category contains testable properties for which
testability is not directly due to any ’general’ reason known
so far. Finding a reasonable general explanation to why such
properties are testable (besides the ’trivial’ fact that their
existence is determined by the frequency vector of the graph
for some suitable disc-radius), would essentially amount to
a characterization of testable properties in this model.
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7needless to say, most if not all such previously constructed
testers are much more efficient from these implied by Theo-
rem 3.4 here



10. REFERENCES
[1] N. Alon, E. Fischer, I. Newman, A. Shapira. A

combinatorial characterization of the testable graph
properties: it’s all about regularity. Proceedings of
the 38th Annual ACM Symposium on Theory of
Computing (STOC) pp. 251-260, 2006.

[2] I. Benjamini, O. Schramm, and A. Shapira. Every
minor-closed property of sparse graphs is testable.
Proceedings of the 40th Annual ACM Symposium on
Theory of Computing (STOC), pp. 393–402, 2008.

[3] C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, B.
Szegedy, Katalin Vesztergombi: Graph limits and
parameter testing. STOC 2006: 261-270

[4] A. Czumaj, A. Shapira, and C. Sohler. Testing
hereditary properties of nonexpanding bounded-degree
graphs. SIAM Journal on Computing, 38(6):
2499–2510, April 2009.

[5] G. Elek. L2-spectral invariants and convergent
sequences of finite graphs. Journal of Functional
Analysis, vol. 254, no. 10, pp. 2667–2689, 2008.

[6] O. Goldreich, S. Goldwasser, D. Ron. Property
Testing and its Connection to Learning and
Approximation. J. ACM, 45(4): 653-750, 1998.

[7] O. Goldreich and D. Ron. Property testing in bounded
degree graphs. Algorithmica, 32(2): 302–343, 2002.

[8] A. Hassidim, J. A. Kelner, H. N. Nguyen, and
K. Onak. Local graph partitions for approximation
and testing. Proceedings of the 50th IEEE Symposium
on Foundations of Computer Science (FOCS), pp.
22–31, 2009.

[9] R. Lipton and R. Tarjan. Applications of a Planar
Separator Theorem. SIAM Journal on Computing,
9(3):615–627, 1980.

[10] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,
D. Chklovskii, U. Alon Network Motifs: Simple
Building Blocks of Complex Networks. Science, Vol.
298. no. 5594, pp. 824 - 827, 2002.

[11] G. Miller. Isomorphism of graphs which are pairwise
k-separable. Information and Control, 56(1-2): 21–33,
1983.

[12] H. Nguyen and K. Onak. Constant-Time
Approximation Algorithms via Local Improvements.
Proceedings of the 49th IEEE Symposium on
Foundations of Computer Science (FOCS), pp.
327–336, 2008.

[13] K. Onak. New Sublinear Methods in the Struggle
Against Classical Problems. PhD Thesis,
Massachusetts Institute of Technology, 2010.

[14] R. Rubinfeld and M. Sudan, Robust characterization
of polynomials with applications to program testing.
SIAM Journal of Computing, 25 (1996), 252–271 (first
appeared as a technical report, Cornell University,
1993).


