
TESTING MEMBERSHIP IN LANGUAGES THAT HAVE SMALL
WIDTH BRANCHING PROGRAMS∗

ILAN NEWMAN†

SIAM J. COMPUT. c© 2002 Society for Industrial and Applied Mathematics
Vol. 31, No. 5, pp. 1557–1570

Abstract. Combinatorial property testing, initiated formally by Goldreich, Goldwasser, and
Ron in [J. ACM, 45 (1998), pp. 653–750] and inspired by Rubinfeld and Sudan [SIAM J. Comput.,
25 (1996), pp. 252–271], deals with the following relaxation of decision problems: Given a fixed
property and an input x, one wants to decide whether x has the property or is “far” from having the
property.

The main result here is that, if G = {gn : {0, 1}n → {0, 1}} is a family of Boolean functions
which have oblivious read-once branching programs of width w, then, for every n and ε > 0, there is
a randomized algorithm that always accepts every x ∈ {0, 1}n if gn(x) = 1 and rejects it with high
probability if at least εn bits of x should be modified in order for it to be in g−1

n (1). The algorithm

makes (2
w

ε
)O(w) queries. In particular, for constant ε and w, the query complexity is O(1).

This generalizes the results of Alon et al. [Proceedings of the 40th IEEE Symposium on Foun-
dations of Computer Science, IEEE Computer Society, 1999, pp. 645–655] asserting that regular
languages are ε-testable for every ε > 0.

Key words. property testing, randomized algorithms, branching programs

AMS subject classifications. 68Q15, 68Q10

PII. S009753970038211X

1. Introduction. Combinatorial property testing, initiated formally by Gold-
reich, Goldwasser, and Ron in [11] and inspired by Rubinfeld and Sudan [16], deals
with the following relaxation of decision problems: Given a fixed property and an
input x, one wants to decide whether x has the property or is “far” from having
the property. A property here is a set of binary strings (those inputs that have the
“property”) and is identified with its characteristic function (that is, “1” on all inputs
that have the property and “0” elsewhere). Being “far” is measured by the number
of bits that need to be changed for an input x in order for it to have the property
(i.e., the Hamming distance). A property is said to be (ε, q)-testable if there is a
randomized algorithm that, for every input, x ∈ {0, 1}n queries at most q bits of x
and with probability 2/3 distinguishes between the case when x has the property and
the case when x is εn-far from having the property. Varying ε and n may result in
different algorithms with different query complexity q = q(ε, n) that may depend on
both ε and n. If, for a fixed ε > 0 and every large enough n, a property P is (ε, q)-
testable with a number of queries q that is independent of the length of the input, n,
then we say that P is ε-testable. If, for every ε > 0, P is ε-testable, then P is said to
be testable.

Apart from being a natural relaxation of the standard decision problem, combi-
natorial property testing emerges naturally in the context of probably approximately
correct (PAC) learning, program checking [10, 6, 16], probabilistically checkable proofs
[3], and approximation algorithms [11].

In [11], the authors mainly consider graph properties and show (among other

∗Received by the editors December 5, 2000; accepted for publication (in revised form) February
18, 2002; published electronically August 5, 2002. A preliminary version of this paper appeared in
Proceedings of the 41st Symposium on Foundations of Computer Science, IEEE Computer Society,
Los Alamitos, CA, 2000, pp. 251–258.

http://www.siam.org/journals/sicomp/31-5/38211.html
†Department of Computer Science, University of Haifa, Haifa 31905, Israel (ilan@cs.haifa.ac.il).

1557

1558 ILAN NEWMAN

things) the quite surprising fact that the graph property of being bipartite is testable.
They also raise the question of obtaining general results identifying classes of prop-
erties that are testable. Some interesting examples are given in [11], and several
additional ones can be obtained by applying the regularity lemma [1]. Alon et. al.
[2] proved that membership in any regular language is testable, hence obtaining a
general result identifying a nontrivial class of properties, each being testable. Here we
further pursue this direction: We prove that if a language has a (nonuniform) obliv-
ious read-once branching program (BP) of width w, then it is (ε, (2

w

ε)O(w))-testable.
In particular, this shows that every family of functions that can be defined by a
nonuniform collection of constant width oblivious read-once BPs is testable. This
also generalizes and gives an alternative proof and algorithm for the result of [2], as
regular languages can be represented by constant width oblivious read-once BPs. We
note, however, that the dependence of the query complexity here is worse than in [2].

A BP of width w is a deterministic leveled BP in which every level contains at
most w vertices. In what follows, we will be interested in BPs of width w that have the
further restriction of being oblivious read-once. Namely, every level is associated with
a variable (all nodes in a level query the same variable), and each variable appears in
at most one level. BPs have been extensively studied as a model of computation for
Boolean functions. ([7] contains a survey text; see also [4, 5, 13] for a partial list of
different aspects involving BPs and read-once BPs.)

The size of a BP (and a read-once BP) is tightly related to the space complex-
ity of the function it computes: If a language is in SPACE(s), then it has a BP of
total size at most n · 2O(s) [8] and also a read-once BP of width 2O(2

s) [12]. How-
ever, the inverse of the last assertion is not true even for computable languages.
The result of [2] and the result here, in its uniform manifestation, may be viewed
as asserting that “very small” space functions are “efficiently” testable: All regu-
lar languages are in SPACE(O(1)) and hence have a read-once BP of O(1) size.
What happens for SPACE(ω(1)) functions? It is known that SPACE(O(1)) =
SPACE(o(log log n)) = Regular [12]. Hence the above question is interesting for
SPACE(s) with s = Ω(log log n). The result here says nothing directly for s =
Ω(log log n). However, we get rid of the strong “uniformity” of the deterministic fi-
nite automata (DFAs) used in [2]. In regular languages, the same finite automaton
is used to test all the words, even of different lengths. On the other hand, when
represented by a family of BPs, each BP computes the characteristic function of the
property for a given input length. There are languages of arbitrary complexity that
can be represented by O(1)-width oblivious BPs. Our results apply to such cases as
well. This includes the family of O(1)-terms disjunctive normal form (DNF), O(1)-
clauses conjunctive normal form (CNF), and some other interesting examples (see
section 4).

Finally, we note that SPACE(O(log n)) functions are not testable in general;
[2, 11, 15] contain lower bounds showing that some functions in SPACE(O(log n))
are not ε-testable and sometimes not even (ε, nδ)-testable for some fixed ε, δ < 1.
However, the question of whether properties in SPACE(s) for log logn ≤ s << log n
are “efficiently” testable is open. In particular, we do not have any candidate for a
SPACE(O(log log n)) function whose ε-testing requires nΩ(1) queries for some fixed
ε > 0.

2. Definitions and notation. We identify properties with the collection of
their characteristic Boolean functions, namely: A property P ⊆ {0, 1}∗ is identified
with {f : {0, 1}n −→ {0, 1}} so that f(x) = 1 if and only if x ∈ P.

TESTING MEMBERSHIP IN BRANCHING PROGRAMS 1559

An oblivious leveled BP is a directed graph B in which the nodes are partitioned
into levels L0, . . . , Lm. There are two special nodes: a “start” node belonging to
L0 and an “accept” node belonging to Lm. Edges are going only from a level to
nodes in the consecutive level. Each node has at most two out-going edges, one of
which is labeled by “0” and the other by “1.” In addition, all edges in between two
consecutive levels are associated with a member of {1, . . . , n} (a Boolean variable).
An input x ∈ {0, 1}n naturally defines a path starting at the start-node: At each step,
if the edges are associated with i, then the edge with the label identical to the value
of xi is chosen. A leveled BP defines a Boolean function g : {0, 1}n −→ {0, 1} in the
following way: g(x) = 1 if the path that x defines reaches accept. This definition of
BPs is essentially equivalent to what is sometimes called “deterministic” BPs (as each
input defines at most one path from each node). However, note that this definition
is slightly different from the standard definition of deterministic BPs, in which every
vertex has exactly two outgoing edges; one is labeled by “1” and the other by “0.”
Here, instead, an input x can be “stuck” at an internal node v due to the fact that
v has just one outgoing edge that is associated with i and is labeled by a value that
is opposite to that of xi. (This cannot happen in the standard definition.) A leveled
BP is of width w (w-width) if its largest level contains w nodes.

An oblivious read-once BP computing g : {0, 1}n −→ {0, 1} is a leveled BP with
the additional property that edges ending in distinct levels are labeled with distinct
variables. This implies also that there are exactly n + 1 levels (for a function that
depends on all its n variables). We number the levels of the BP from 0 (containing
the start s) and on and associate to the edges in between levels the formal Boolean
variables X1, . . . , Xn consecutively (by possibly renaming the variables). We may
assume that the last level is numbered by n.

In what follows, we consider only oblivious read-once BPs. For a given BP, B,
and two nodes u, v, we define B[u : v] the (sub) BP for which its start node is u and
its accept node is v. If u ∈ Li and v ∈ Lj , then B[u : v] computes a Boolean function
on the variables Xi, . . . , Xj . The length of B[u : v] in this case is ν = j − i. Such
B[u : v], as a subprogram of a read-once oblivious BP, is also read-once oblivious
BP. When discussing such a BP B[u : v], we renumber its levels so that its first
level, which is level Li in B, is denoted L0(B[u : v]), and its last level is denoted by
Lν(B[u : v]). When it is clear from the context which is the BP that is considered,
we just refer to its first and last levels as L0, Lν , respectively (where ν is the length
of the corresponding BP).

We will be interested in BPs for which the start and accept nodes are not always
defined. Namely, the BP B might have multiple nodes in its first and last levels. For
such a BP of length n, any choice of start and accept nodes (s, t) ∈ L0 ×Ln defines a
different function on n variables. If no path from a node v ∈ B reaches the last level,
then deleting v from B will not change the function that B computes for any choice
of start and accept nodes in the first and last levels. Similarly, we may delete every
vertex that can be reached from no vertex of the first level. Also, when we talk about
B[u : v], for some specific nodes u, v, we may delete any node from B[u : v] that either
is not reachable from u or cannot reach v. In particular, this means that u is the only
node in L0(B[u : v]), and v is the only node in the last level of B[u : v]. Such nodes
that can be deleted from the BP are called “unnecessary nodes.” In what follows, we
always assume that all BPs under discussion contain no “unnecessary nodes.”

For integers a < b, we denote by Ba:b the subprogram of B containing all nodes
in levels La, La+1, . . . , Lb. Ba:b has undefined source and sink. Note that, if B is an

1560 ILAN NEWMAN

oblivious read-once BP of width w, then, for any two nodes u, v and any two numbers
a and b, B[u : v] and Ba:b are oblivious read-once BPs of width at most w. (The
width can become smaller as nodes might become “unnecessary.”)

Let x, y ∈ {0, 1}n; we define dist(x, y) = hamming(x, y) = |{i| xi �= yi}|. Let
g : {0, 1}n −→ {0, 1} such that g−1(1) �= φ; we define dist(x, g) = min{dist(x, y)| y ∈
g−1(1)}. For a BP B and two nodes u and v in levels Li, Lj , respectively, let
dist(x,B[u : v]) = dist(x[i, j], g′), where g′ is the function computed by B[u : v]
on the formal variables Xi, Xi+1, . . . , Xj .

Let B be an oblivious read-once BP with fixed start and accept nodes that com-
putes a Boolean function g : {0, 1}n −→ {0, 1}. A randomized algorithm A is a
1-sided error ε-test for B (g) of query complexity c(A) if, for every input x ∈ {0, 1}n,
it queries at most c(A) queries and

1. for every input x ∈ g−1, the algorithm accepts;
2. for every input x ∈ {0, 1}n for which dist(x, g) ≥ εn, the algorithm rejects

with probability at least 2/3.
Let Bnw be the set of all oblivious read-once BPs of width w and length n. For

B ∈ Bnw, we denote c̃(ε, B) = min{c(A) : A is a 1-sided error ε-test for B}. Namely,
c̃(ε, B) is the query complexity of the best 1-sided error ε-test for B. Let q̃(ε, w) =
max{c̃(ε, B) : B ∈ Bnw}. Namely, q̃(ε, w) is the worst query complexity needed to
ε-test a w-width BP. Formally, q̃(ε, w) is a function of n too; however, as we shall see,
asymptotically this is not the case.

Finally, in what follows, for ease of notation, we neglect taking �� and �� for
numbers, even when they need to be integers, whenever this is clear from the context
and has no bearing on the essence of proofs.

3. Results. Our main result is the following.
Theorem 1. Let g : {0, 1}n −→ {0, 1} be computed by an oblivious read-once BP

of width w. Then there is an ε-test for g that makes (2
w

ε)O(w) queries.
Corollary 3.1. If g : {0, 1}n −→ {0, 1} has a read-once BP of width w = O(1),

then g is testable.
The proof of Theorem 1 uses several reduction steps in order to reduce testing

of a w-width BP to testing of (w − 1)-width BPs. This approach has prospects since
1-width BPs are testable, as asserted by the following proposition.

Proposition 1. If g : {0, 1}n −→ {0, 1} is computable by an oblivious read-once
BP of width w = 1, then g is (ε, O(1ε))-testable by a 1-sided error algorithm.

Proof. We assume that g is not identically “0” and not identically “1,” as oth-
erwise the test is trivial (with no queries at all). Let B be a BP of width w = 1
computing the nonzero function g. It is clear from the definition that g is a one-term
DNF. That is, written in formal variables, X1, . . . , Xn, g = Πni=1ti, where ti is either
Xi or X̄i. g does not necessarily depend on all of its variables; in this case, we just
look at the variables it does depend on. Let x be an input such that dist(g, x) ≥ εn
(assuming that there is such x). It is easy to see that, for at least ε · n of the places
{1, . . . , n}, xi is not consistent with ti. Hence sampling O(1ε) bits of an input x and
rejecting if xi is inconsistent with ti are guaranteed to succeed with probability 2/3
for εn-far inputs, and with probability 1 for any input x for which g(x) = 1.

For the proof of the case w ≥ 2, we will need some machinery developed hereafter.

3.1. Main definitions and some intuition. The algorithm for ε-testing w-
width BPs will be recursive on the width. Namely, our aim is to reduce ε-testing of a
w-width BP to testing of (w − 1)-width BPs with possibly a smaller ε. Key notions
are that of r-full levels and decomposable BPs. They are defined below.

TESTING MEMBERSHIP IN BRANCHING PROGRAMS 1561

levellevel l

v

l-r

A (v)r

Fig. 1. Ar(v) is the set of nodes in level Ll−r that can reach v. Here v is not r-full as not all
nodes in level Ll−r can reach v.

For an integer r and a node v in a BP, we denote

Ar(v) = {u| there is a path of length r from u to v}.
See Figure 1.

Definition 3.2. Let v be a vertex in level Ll of a BP with start and accept nodes
that are not necessarily defined. We say that v is r-full if Ar(v) contains all nodes of
level Ll−r. If every vertex in level Ll is r-full, then Ll is said to be r-full.

Namely, a vertex v is r-full if v is reachable from every vertex of level Ll−r; see
Figure 1. Note that, for every two nodes u and v of a BP B, v is always 1-full with
respect to B[u : v]. This is due to the fact that B[u : v] contains no “unnecessary
nodes.”

Fact 1. Assume that v ∈ Ll is r-full for a certain r and l; then
• v is r′-full for every r′ > r;
• if u ∈ Ll+1 is a neighbor of v, then u is (r + 1)-full.

Proof. For the first part, assume that r′ > r and v′ ∈ Ll−r′ . Then, as we assume
that there are no “unnecessary vertices,” v′ can reach some vertex v′′ ∈ Ll−r. In turn,
v′′ can reach v by the assumption that v is r-full. Hence v′ can reach v.

For the second part, if v is r-full, it can be reached from any w ∈ Ll−r. Since u
is a neighbor of v, it can also be reached by every w ∈ Ll−r.

The following is a crucial ingredient for the rest of what follows.
Definition 3.3. Let δ < 1. A BP of length ν, with start and accept nodes that

are not necessarily defined, is said to be δ-decomposable if, for some δν
20 ≤ , ≤ ν − 1

and r ≤ � δ�10�, L� is r-full.
For a given BP, B, the role of the non δ-decomposable subprogram of B is the

following: We first show in section 3.2 that, if B′ is not δ-decomposable for δ < ε,
then ε-testing B′ can indeed be reduced to testing “narrower” BPs. Then, in section
3.3, we show how a general BP can be decomposed into disjoint nondecomposable
subprograms such that testing the BP can be reduced to testing not too many of the
nondecomposable parts of it.

3.2. Testing nondecomposable BPs. The following lemma, which is the main
technical part of the proof of Theorem 1, relates testing w-width nondecomposable
BPs to the test of general (w − 1)-width BPs.

Lemma 3.4. Let δ ≤ ε, and let B be a non δ-decomposable BP of width w and
length n. Then ε-testing B[s : t], for any start and accept nodes s and t, requires at

most O(w
4

δ3 (log w
2

δ)2) · q̃(0.8ε, w − 1) queries.

1562 ILAN NEWMAN

Proof. The idea of the proof is as follows: We fix O(1
δ2) levels that are equally

spaced in B, leaving out enough space in the beginning of B. The assumption that
B is not δ-decomposable will imply that, for each of two nodes u, v in the levels we
choose, the test of B[u : v] can be reduced to tests of (w − 1)-width BPs. We then
show how to combine the results of the tests on B[u : v] for all such u, v into an ε-test
for B.

Formally, let m = � δ2n400 �. Let {l0, . . . , lp} be the set of numbers that are m
apart, starting from � 20mδ � and ending at or before n. Namely, li = � 20mδ � + i · m,

i = 0, 1, . . . , p = �n−l0m � = O(1
δ2). Let S = Ll0 × · · · × Llp . Our first aim is to show

that, for every pair (u, v) ∈ Lli × Lli+1
, the ε1-test of B[u : v] can be reduced to a

small number of general tests of (w − 1)-width BPs.
We first need the following claims.
Claim 3.5. For every l ≥ l0, level Ll is not (2m)-full.
Proof. The proof is immediate from the choice of parameters and the fact that B

is not δ-decomposable.
For each l such that li < l ≤ li+1, let F (l) be the set of all (l − li)-full vertices in

level Ll. In other words, v ∈ F (l) if it is in the lth level and it is reachable from every
vertex of the lith level. By our assumption on B, F (l) �= Ll, as otherwise Ll would
be (l − li−1)-full in contradiction with Claim 3.5.

Hence the above implies the following claim.
Claim 3.6. Let u, v be vertices in levels Lli , Lli+1

, respectively, and let l be such
that li ≤ l ≤ li+1.

• Let u′ be in level Ll, and assume that u′ /∈ F (l); then B[u : u′] is of width
w′ ≤ w − 1.

• Let v′ be in level Ll, and assume that v′ ∈ F (l); then B[v′ : v] is of width
w′ ≤ w − 1.

Proof. Let u′ /∈ F (l) be in level Ll. As u′ /∈ F (l), u′ is not (l − li)-full; then, by
Fact 1, it is also not (l− l′)-full for every l′ > li. Namely, for every intermediate level
Ll′ , li < l′ < l, there is a vertex that cannot reach u′ and hence can be deleted from
B[u : u′].

For the second part, assume first that v′ is in level Ll for l > li and v′ ∈ F (l). Let
t be any node at level Ll′ , l < l′ ≤ li+1, that is reachable from v′. Since v′ ∈ F (l),
it follows that t is (l′ − li)-full. Hence not all vertices in level Ll′ are reachable from
v′, as otherwise level Ll′ will be (l′ − li)-full, in contradiction to Claim 3.5. As this is
true for every l < l′ ≤ li+1, it follows that B[v′ : v] is of width w′ ≤ w − 1. If v′ is in
level Lli , then the same argument for t will work except that t will be (l′ − li−1)-full.
Again, this implies that level Ll′ , li < l′ ≤ li+1, cannot have all of its nodes reachable
from v′. Otherwise, it would be (l′ − li−1)-full, in contradiction to Claim 3.5.

Claim 3.6 asserts that B[vi : vi+1] is indeed of width of at most (w − 1) unless
vi /∈ F (li) and vi+1 ∈ F (li+1). We still need to deal with the case for which vi /∈ F (li)
and vi+1 ∈ F (li+1), where the subprogram B[vi : vi+1] might be of width w. The key
observation here is that any path from vi to vi+1 must start at Lli − F (li) (as vi is
such) and end in F (li+1). Hence this path must intersect F (l) for some intermediate
level Ll, li < l ≤ li+1. In addition, by Fact 1, once it intersects F (l), it intersects
F (l′) for every l′ > l (see Figure 2). This suggests the following.

Let k = 10
δ ; we choose k + 1 numbers, p0, . . . , pk, that are m

k apart in the range
{li, . . . , li+1}: pj = li + j · mk , j = 0, . . . , k.

Claim 3.7. For every u ∈ Lli − F (li) and v ∈ F (li+1), the following hold:
• If y ∈ {0, 1}n is such that dist(y,B[u : v]) = 0, then, for some j ∈ {1, . . . , k},

TESTING MEMBERSHIP IN BRANCHING PROGRAMS 1563

l i

vi

l i+1

vi+1

level level

Fig. 2. Vertices in shadowed area are in F (). If a path from vi to vi+1 intersects F (l) at some
intermediate level Ll, then it intersects F () for every following level.

there are some u′ ∈ Lpj−1 − F (pj−1), v′ ∈ F (pj) so that dist(y,B[u : u′]) =
dist(y,B[v′ : v]) = 0.

• If y ∈ {0, 1}n is such that dist(y,B[u : v]) ≥ (1−α)εm for some α < 1, then,
for every j ∈ {1, . . . , k} and for every u′ ∈ Lpj−1 − F (pj−1) and v′ ∈ F (pj)
such that u can reach u′, u′ can reach v′, and v′ can reach v,

dist(y,B[u : u′]) + dist(y,B[v′ : v]) ≥ (1 − α)εm− m

k
≥ (0.9 − α)εm.

Proof. If dist(y,B[u : v]) = 0, then, by the discussion above, there is some level
li < l ≤ li+1 so that the path, Path(y), that y defines from u to v intersects F (l′)
for each l ≤ l′ ≤ li+1 and does not intersect F (l′′) for each li ≤ l′′ < l. Let j be the
smallest such that pj ≥ l. Let u′ be the vertex that Path(y) intersects in Lpj−1 , and
let v′ be the vertex that Path(y) intersects in Lpj . Clearly, for these j, u′, v′, the first
part of the claim holds.

For the second part, assume that, for y ∈ {0, 1}n, there are j ∈ {1, . . . , k},
u′ ∈ Lpj−1 − F (pj−1), and v′ ∈ F (pj) such that u can reach u′, u′ can reach v′,
and v′ can reach v, and such that dist(y,B[u : v]) < (0.9 − α)εm. Then, certainly,
dist(y,B[u : v]) < (1 − α)εm: First, by changing at most (0.9 − α)εm bits of y
in the range {li + 1, . . . , pj−1} and {pj + 1, . . . , li+1}, we can get a y′ such that its
corresponding parts (to the places above) traverse B from u to u′ and from v′ to v.
Then, by changing possibly additional m/k ≤ 0.1εm bits, namely, all bits in the range
{pj−1 + 1, . . . , pj}, we get a y′′ that traverses B from u to v through u′ and v′.

We now can present the algorithm that (1 − α)ε-tests B[u : v] for each (u, v) ∈
Lli × Li+1, given that we have a general 1-sided error test for (w − 1)-width BPs.
Note that the length of B[u : v] for any such u and v is m.

Algorithm A1((1 − α)ε, w, B[u : v]).
The first parameter is relative distance, the 2nd is width, and (u, v) ∈ Lli

× Lli+1
.

1. If u ∈ F (li) or v /∈ F (li+1), then, by Claim 3.6, B[u : v] is already of width w′ ≤ w− 1.
This test is done by calling the general (1−α)ε-testing procedure for (w−1)-width BPs.

2. Otherwise, if u /∈ F (li) and v ∈ F (li+1), let k = 10
δ and ρ = 1+

log(kw2)
log 3 . We choose in

the range {li, . . . , li+1} k + 1 numbers, p0, . . . , pk, that are m
k apart: pj = li + j · m

k ,
j = 0, . . . , k.

For every triplet (j, u′v′) such that j ∈ {1, . . . , k}, u′ ∈ Lpj−1
− F (pj−1), v

′ ∈ F (pj),
and such that u can reach u′, u′ can reach v′ and v′ can reach v, a (0.9 − α)ε-test is
performed ρ independent times on B[u : u′] and B[v′ : v]. This is done by calling the
general procedure for testing (w − 1)-width BPs.
If there is a triplet (j, u′v′) for which all ρ tests pass, then the outcome of A1 is “Yes.”
Otherwise, if, for every triplet (j, u′, v′), one or more of the ρ tests on either B[u : u′] or
B[v′ : v] answer “No,” then the outcome of A1 is “No.”

1564 ILAN NEWMAN

Claim 3.8. Let B be a w-width BP that is not δ-decomposable, and let m, k be

as above. Let x ∈ {0, 1}n be any input; then Algorithm A1 makes O(w
2

δ · log w
2

δ) calls
for a general (1 − α)ε-test of (w − 1)-width programs on x and

• if dist(x,B[u : v]) = 0, then A1 answers “Yes” on x with probability 1;
• if dist(x,B[u : v]) ≥ (1 − α)εm, then the outcome of A1 on x is “No” with

probability at least 2/3.
Proof. For each triplet (j, u′, v′) that is relevant to the second case of Algorithm

A1, Claim 3.6 asserts that B[u : u′] and B[v′ : v] are of width at most (w− 1). Hence

all calls of A1 are to tests of (w−1)-width BPs. There are at most O(k ·w2) = O(w
2

δ)
such triplets; hence the claim on the number of calls to (w−1)-width tests is obvious.

We assume that the general (w− 1)-test is a 1-sided error. Let x ∈ {0, 1}n be an
input with dist(x,B[u : v]) = 0. A “No” result will be obtained if B[u : v] is of width
at most w − 1 and the general (w − 1)-width test answers “No” (1st case of A1) or
if, for every triplet (j, u′, v′) as above, one of the tests, to either B[u : u′] or B[v′ : v],
answers “No.” Both cases occur with probability 0 by Claim 3.7.

Now let x ∈ {0, 1}n be an input for which dist(x,B[u : v]) ≥ (1−α)εm. If B[u : v]
is of width (w− 1), then A1 answers “Yes” only if the general (w− 1)-width test errs.
This occurs with probability at most 1/3. If B[u : v] is of width w, then, by Claim 3.7,
for every triplet (j, u′, v′) as above, dist(y,B[u : u′])+dist(y,B[v′ : v]) ≥ (0.9−α)εm.
However, for each such triplet, either dist(y,B[u : u′]) ≥ (0.9 − α)ε · j−1

k · m or

dist(y,B[v′ : v]) ≥ (0.9−α)ε·(1− k−j
k)m. In any of these cases, a general (0.9−α)ε-test

to the corresponding (w− 1)-width BP would erroneously say “Yes” with probability
at most 1/3. Since there are ρ such independent tests, all of these tests would err with
probability at most (13)ρ ≤ 1

3kw2 . This would cause A1 to erroneously say “Yes” due
to this triplet. As there are at most kw2 possible triplets, A1 errs with probability at
most 1/3.

We now formally end the proof of Lemma 3.4 by presenting the following propo-
sition and the testing algorithm it implies.

Proposition 2. Let B be a non δ-decomposable BP of width w and length n. Let
m, {l0, . . . , lp}, and S be as defined above (right after the statement of Lemma 3.4).
Let y ∈ {0, 1}n; then, for any start and accept nodes (s, t) ∈ L0 × Ln, the following
hold.

1. If dist(y,B[s : t]) = 0, then there exists a tuple (v0, . . . , vp) ∈ S such that s
can reach v0, vp can reach t, and dist(y,B[vi : vi+1]) = 0 for i = 0, . . . , p− 1.

2. Let dist(y,B[s : t]) ≥ εn; then, for each (v0, . . . , vp) ∈ S such that s can reach

v0 and vp can reach t, Σi=p−1
i=0 dist(x,B[vi : vi+1]) ≥ εn− l0− (n− lp) ≥ 0.9εn.

Proof. If dist(y,B[s : t]) = 0, then the path that y takes in B defines the
tuple (v0, . . . , vp) ∈ S which contains the nodes in which this path intersects Lli , i =
0, . . . , p, along the way from s to t. This tuple asserts the first item of the proposition.

If dist(y,B[s : t]) ≥ εn, then, for any (v0, . . . , vp) ∈ S such that s can reach
v0 and vp can reach t, dist(y,B[v0 : vp]) ≥ εn − l0 − (n − lp) ≥ 0.9εn. However,

dist(y,B[v0 : vp]) = Σi=p−1
i=0 dist(x,B[vi : vi+1]).

Proposition 2 defines a way to combine answers to tests on BPs of the form
B[vi : vi+1] into an ε-test of B. Intuitively, on an input x ∈ {0, 1}n, we just need
to check for all tuples (v0, . . . , vp) ∈ S, and check whether there exists one for which
dist(x,B[vi : vi+1]) = 0 for i = 0, . . . , p− 1.

Formally, let x ∈ {0, 1}n be the input. The following is an ε-test of B for any

TESTING MEMBERSHIP IN BRANCHING PROGRAMS 1565

start and accept nodes:

Algorithm A2(ε, w). (B is a non δ-decomposable BP of width w.)

Let m and S be as above, and let ν = 1 +
log(pw2)

log 3 = O(log w
δ).

1. For each (u, v) ∈ Lli
× Lli+1

, i = 0, . . . , p− 1, call A1(0.9 · ε, w,B[u : v]) (namely, with

α = 0.1) independently, for ν times. If for (u, v), all of these tests answer “Yes,” then
define T (u, v) = 1. Otherwise, if there is a test out of the ν tests that answers “No” for
(u, v), then set T (u, v) = 0.

2. Define the following directed graph G = (V,E): V = L0 ∪ Ln ∪ (∪p
i=0
Lli

), and

E = {(s, u) ∈ L0 × Ll0
|s can reach u in B}

∪{(v, t) ∈ Llp × Ln|v can reach t in B}

∪{(u, v) ∈ Lli
× Lli+1

, i = 0, . . . , p− 1| such that T (u, v) = 1}.

3. Answer “Yes” for (s, t) ∈ L0 × Ln if and only if s can reach t in G.

Claim 3.9. For any (s, t) ∈ L0 × Ln and for every input x, the following hold.
1. If dist(x,B[s : t]) = 0, then Algorithm A2 answers “Yes” on (s, t) with

probability 1.
2. If dist(x,B[s : t]) > εn, then Algorithm A2 answers “No” on (s, t) with

probability at least 2/3.
Proof. Assume that dist(x,B[s : t]) = 0 for an input x ∈ {0, 1}n and (s, t) ∈

L0×Ln. Then, by Proposition 2, there exists a tuple (v0, . . . , vp) ∈ S such that s can
reach v0, vp can reach t, and dist(y,B[vi : vi+1]) = 0 for i = 0, . . . , p − 1. By Claim
3.8, Algorithm A1 answers “Yes” on each of the calls A1(0.9 · ε, w,B[vi : vi+1]) with
probability 1. Hence the path (s, v0, . . . , vp, t) is a valid path in G with probability 1,
causing A2 to answer “Yes” with the same probability.

For the second part, assume that dist(x,B[s : t]) > εn. Then, by Proposi-
tion 2, for each (v0, . . . , vp) ∈ S such that s can reach v0 and vp can reach t,

Σi=p−1
i=0 dist(x,B[vi : vi+1]) ≥ 0.9εn. However, then, for each such (v0, . . . , vp) ∈ S, for

some i ≤ p− 1, dist(x,B[vi : vi+1]) ≥ 0.9εnp > 0.9εm. Let E′ be the set that contains

for each (v0, . . . , vp) ∈ S a corresponding (vi, vi+1) for which dist(x,B[vi : vi+1]) ≥
0.9εm. Note that E′ contains an (s, t)-cut in G. Namely, s cannot reach t in G−E′.

For each member (vi, vi+1) ∈ E′, Claim 3.8 asserts that Algorithm A1 answers
“No” on the call A1(0.9 · ε, w,B[vi : vi+1]) with probability 2/3. Hence it answers
erroneously “Yes” on all ν calls for a pair (u, v) ∈ E′ with probability at most (13)ν ≤

1
3pw2 . Namely, T (u, v) is set erroneously to “1” in step 1 of the algorithm with

probability at most 1
3pw2 . However, there are at most pw2 possible pairs in E′. This

implies that with probability at most 1/3 there exists a pair (u, v) ∈ E′ for which
T (u, v) = 1. In particular, it follows that s cannot reach t in G with probability at
least 2/3.

Claim 3.10. For any (s, t) ∈ L0×Ln and for every input x, Algorithm A2 makes

O(w
2

δ2 log wδ) calls to A1 with distance parameter 0.9ε.

Proof. There are O(pw2) = O(w
2

δ2) possible pairs (u, v) ∈ Lli×Lli+1 , i = 0, . . . , p−
1. For each pair (u, v), there are ν = O(log wδ) calls for A1.

Corollary 3.11. Algorithm A2 provides a 1-sided error ε-test for B[s : t] for

every start and accept nodes (s, t) ∈ L0(B)×Ln(B), making at most O(w
4

δ3 (log w
2

δ)2) ·
q̃(0.8ε, w − 1) queries.

Proof. Claim 3.9 asserts the correction of A2 as a 1-sided error ε-test for B[s : t]
for each (s, t) ∈ L0(B) × Ln(B). Observe that the calls for A1 do not depend on the

1566 ILAN NEWMAN

choice of s and t. Hence, with the same number of queries as described above for a
given choice of s, t, A2 provides an ε-test for every choice of s and t; for each s and t,
the outcome has at least probability 2/3 of being correct.

According to Claim 3.8, each call for A1 results in possibly O(w
2

δ ·log w
2

δ) calls to a

general 0.8ε-test of (w− 1)-width BPs. Claim 3.10 asserts that there are O(w
2

δ2 log wδ)
calls to A1; hence the claim follows.

This ends the proof of Lemma 3.4.

3.3. The general case. In order to test general w-width BPs, it remains to be
shown how to reduce testing of decomposable BPs to that of nondecomposable ones.
We need the following proposition.

Proposition 3. For a BP, B, and t > r, let t1, t2 be r-full vertices in Lt, and
let u ∈ Ll with l ≤ t− r. Then, for every y ∈ {0, 1}n,

|dist(y,B[u : t2]) − dist(y,B[u : t1])| ≤ r.

Proof. The closest y′ to y that traverses B from u to t1 must intersect Ar(t2).
Hence, by changing only the r last bits of y′, we get a y′′ that traverses B from u to
t2.

Definition 3.12. Let y ∈ {0, 1}n and 0 ≤ a < b ≤ n; we define

dist(y,Ba:b) = min{dist(y,B[u : v])| u ∈ La, v ∈ Lb}.

Claim 3.13. Let B[s : t] be a BP of length ν with start vertex s (the only vertex
at level L0) and accept vertex t (the only vertex at level Lν). Assume that there
are a sequence of numbers l0 = 1, . . . , lh = ν and a sequence of numbers r1, . . . , rh,
such that level Lli is ri-full for each i = 1, . . . , h. Then, for every y ∈ {0, 1}ν ,
Σidist(y,Bli:li+1) ≥ dist(y,B[s : t]) − Σiri.

Proof. Let y be such that Σh1dist(y,Bli−1:li) = d. We will show that dist(y,B[s :
t]) ≤ d + Σiri, which implies the claim.

Indeed, let wi = y[li−1 + 1, : li], i = 1, . . . , h, be the substring of y that corre-
sponds to the variables of Bli−1:li . Let y′i, i = 1, . . . , h, be such that dist(wi, y

′
i) =

di, dist(y′i, Bli−1:li) = 0, and so that Σh1di = d. Then for each y′i, i = 1, . . . , h, let
(ui, vi) ∈ Lli−1 × Lli be such that dist(y′i, Bli−1:li) = dist(y′i, B[ui : vi]) = 0. Namely,
ui, vi are the start and end nodes through which y′i travels through Bli−1:li . Then,
by Proposition 3, for every i = 1, . . . , h, there is a string zi such that dist(y′i, zi) ≤ ri
and dist(zi, B[ui : ui+1]) = 0. However, then, the string z = z1 · . . . · zh, which is
the concatenation of zi, i = 1, . . . , h, “travels” in B through all the ui, i = 0, . . . , h.
In particular, dist(z,B[s : t]) = 0 (as s and t are the only nodes in levels L0, Lν ,
respectively).

On the other hand, dist(y,B[s : t]) ≤ dist(y, z) ≤ Σidist(wi, zi) ≤ Σi(dist(wi, y
′
i)+

dist(y′i, z
′)) ≤ Σi(di + ri) = d + Σiri.

We are ready now to prove Theorem 1.
Proof. Let B be a BP of width w and length n with start and accept nodes s ∈ L0

and t ∈ Ln, respectively. Let a0 = 0, and let a1 = l1 be the smallest integer such
that level La1 is r1-full for r1 ≤ εl1

20 . Let l2 be the smallest integer for which level

La2 , a2 = a1 + l2 is r2-full for r2 ≤ εl2
20 , etc. This defines a sequence of numbers

L = (a0, a1, . . .) of which the last may or may not be n. If the last number in L is
not n, then we add n as the last member resulting in a sequence L′; otherwise, we
set L′ = L. Assume that L′ = (a0 = 0, a1, . . . , ah = n). This defines a sequence

TESTING MEMBERSHIP IN BRANCHING PROGRAMS 1567

of h BPs (with start and accept nodes that are not necessarily defined), B1, . . . , Bh,
Bi = Bai−1:ai of length li = ai − ai−1.

Note that, by our choice, for every i = 1, . . . , h, either li = O(1) or Bi is not
ε1-decomposable for ε1 = 0.5ε. Moreover, for every i = 1, . . . , h − 1, the last level of
Bi is ri-full, and for Bh (with Ln as last level) Ln is either ri-full if n ∈ L or is 1-full
if n was added to result in L′ (as t is always 1-full in B[s : t]).

An ε-test of B is done as follows: For 4/ε times, independently an i ∈ {1, . . . , h}
is chosen at random with probability proportional to the length li. Let I be the
multiset that contains the 4/ε chosen i’s, possibly with multiplicity. Let Ti be a
Boolean flag associated with each i ∈ I. For each i ∈ I, an ε1-test is performed on
Bai−1:ai for every choice of start and accept nodes (u, v) ∈ Lai−1 × Lai . If for some
pair (u, v) ∈ Lai−1

× Lai , the answer to (u, v) in this test is “Yes” then we mark Ti
as “1.” Otherwise, if, for all such pairs (u, v), the answer is “No,” we mark it as “0.”

Finally, if there exists a chosen i ∈ I for which Ti = 0, then the answer to the
ε-test for B is “No.” Otherwise, if for all chosen i’s Ti = 1, then the answer to the
ε-test on B is “Yes.”

Let us first analyze the query complexity of the above test: As was remarked
before, each Bi is either of O(1) length or non ε1-decomposable. Hence, for each
chosen i, an ε1-test for each start and accept node (u, v) ∈ Lai−1 × Lai can either be
done in O(1) queries (in the former case) or it can be done by calling Algorithm A2

for nondecomposable BPs. Note that, in the latter case, Corollary 3.11 asserts that
one call to A2 provides a test for each start and accept node.

Since there are at most 4/ε calls for A2 (with δ = ε1), the total complexity is

q̃(ε, w) ≤ 4

ε
·O
(
w4

ε31

(
log

w2

ε1

)2
)
·q̃(0.8ε1, w−1) = O

(
w4

ε4

(
log

w2

ε

)2
)
·q̃(0.4ε, w−1),

which implies that q̃(ε, w) = (2
w

ε)O(w).
Let us check the error probability of this algorithm. If, for an input x ∈ {0, 1}n,

dist(x,B[s : t]) = 0, then, for every i ∈ I that is chosen in the algorithm above,
dist(x,B[u : v]) = 0 for some (u, v) ∈ Lai−1 × Lai . Hence the answer will be “Yes”
with probability 1.

For an input x such that dist(x,B[s : t]) ≥ εn, by Claim 3.13, Σidist(x,Bai:ai+1
) ≥

εn− Σiri. However, as ri ≤ ε·li
20 , i = 1, . . . , h− 1, and rh ≤ max{1, ε·lh20 }, we conclude

that Σri ≤ εn
20 + 1, and hence Σdist(x,Bai:ai+1) ≥ 94

100εn for large enough n. Thus, by
sampling one i ∈ {1, . . . , h} as above, we get that dist(x,Bai:ai+1) ≥ 1

2εli = ε1li with
probability at least 0.44ε. To see this, let D = {i| dist(x,Bai−1:ai) ≥ 1

2εli}, and let
di = dist(x,Bai−1:ai); then

94

100
εn ≤ Σi∈Ddi + Σi/∈Ddi ≤ Σi∈Dli +

1

2
εΣi/∈Dli ≤ Prob(i ∈ D) · n +

1

2
εn,

which implies that Prob(i ∈ D) ≥ 0.44ε.
Assuming that i ∈ D, for every u ∈ Lai−1 , v ∈ Lai , dist(x,B[u : v]) ≥ ε1li. Thus

the success probability for a chosen i is at least 0.44ε · 2
3 . Namely, i ∈ D, and the

ε1-test on Bi answers “No” as it should for at least one pair of start and accept nodes
of Bi. Making 4/ε independent, such tests will again reduce the error probability to
below 1

3 .

3.4. Time complexity. We end this section with a note on the total running
time of the algorithm. Every fixed BP, B, defines a property PB ⊆ {0, 1}n. We have

1568 ILAN NEWMAN

presented in the section above an “algorithm scheme.” Namely, it produces an ε-test
for any given ε and w-width oblivious read-once BP, B. For the algorithm scheme,
the input is ε and B, while, for the property tester, the input is x ∈ {0, 1}n. These
two notions should not be confused. Thus, in analyzing the running time of the ε-test
of PB for a given BP, B, we may assume that we have at hand the decomposition of B
into nondecomposable parts for all possible recursion levels. We also assume that we
have F (l) for every level l and for every possible subprogram that is considered in any
of the recursion levels. We do not discuss how this data is represented or computed,
which is out of the scope of this paper. We note, however, that, by computing all-
pairs-connectivity, the data above can easily be obtained. Hence the above can be
done in polynomial time (in the length of B and 1/ε).

For an input x ∈ {0, 1}n, the operations in a given recursion level involve sampling
a decomposable subprogram, calling A1 and A2, and processing the return answers
of Algorithms A1 and A2. Sampling one decomposable program takes O(log n) steps
since there might be O(n) nondecomposable Bi’s in the top level. Once all calls to
A1 are done, computing the outcome of Algorithm A2, for a w-width BP in the top
recursion level, is done by forming the graph G and then checking whether s can
reach t in G. Given the answers of the calls to A1, preparing the graph G takes

O(pw2) = O(w
2

ε2) steps. Then, solving the connectivity problem on G takes O(w
2

ε2)
steps. Putting this together yields the following recursion for the time t(ε, w, n), where
ε is the distance parameter, w is the width, and n is the length of the BP:

t(ε, w, n) =
4

ε
·
[
O(log n) + O

(
w2

ε2

)
+ O

(
w2

ε2
log

w

ε

)

·O
(
w2

ε
· log

w2

ε

)
· t(0.4ε, w − 1, n)

]
.

The 4
ε term comes from the number of i’s chosen in the top level general test.

The log n comes from sampling one i. The O(w
2

ε2) term comes from deciding the
connectivity in A2, and the rest come from A1 multiplied by the number of calls to it
from A2.

Solving the above yields t(ε, w, n) = (2
w

ε)O(w) · log n.

4. Examples of interesting functions and open problems. We present
here some examples of functions that have narrow width, read-once BPs and are
“efficiently” testable. (Sometimes a direct efficient testing algorithm is obvious.) The
first nontrivial such family is of all regular languages with a direct testing algorithm
by [2]. We remark here that, for this case, our algorithm is conceptually different
than that of [2]. The dependence of the query complexity on w in this case is similar
to what would result from [2]. The dependence on ε is worse.

Other very simple families are k-term-DNF and k-clauses-CNF, each having 2k-
width oblivious read-once BP. A function g : {0, 1}n −→ {0, 1} is k-term-DNF if
it has a DNF representation (a disjunction of terms where each is a conjunction of
literals) with at most k terms. Analogously, a k-clause CNF is defined. Two remarks
are due here: For both k-term-DNF and k-clause-CNF, ε-tests are known (folklore):
k-term DNF is (ε, O(k log kε))-testable by testing for each term separately. k-term CNF

can be tested by 0 queries for any ε > k
n as such function is either constant or every

input has distance at most k to a satisfiable one.

TESTING MEMBERSHIP IN BRANCHING PROGRAMS 1569

It is also interesting to note that 1-term-DNF includes examples of functions
that are, say, in uniform SPACE(log log n) but not regular and hence do not belong
to SPACE(o(log log n)). One such interesting example is the following example of
Papadimitriou [14]: Let b be a binary string without leading 0’s. We denote by n(b) the
natural number whose binary representation is b. Let L = {b1$b2$. . . $bk| n(bi) = i}.
Clearly L ∈ SPACE(log log n). It is also not hard to see that L is not regular.
However, as L contains at most one word of each length, it obviously has a BP of
width w = 1. Note that, although we have here an alphabet of size 3, we may actually
encode everything in binary by encoding each symbol with two bits.

In view of Theorem 1, one may ask what is the true dependence of ε-testing w-
width read-once BPs on w and ε. This remains open at this point. Another more
puzzling question is whether SPACE(log log n) can be “efficiently” testable. (By this
we mean with complexity, say, less than nδ for any δ > 0.) Currently we do not have
any candidate for a counterexample to this.

Another issue is how far the current result may be generalized. One restriction
that may be considered is being “read-once”—can this be replaced by, say, polynomial
total size? To this, the answer is false: Barrington [4] has proved that every NC1

function has a polynomial length oblivious leveled BP of width 5. However, in [2],
examples of such functions that require θ(

√
n) queries are presented. Hence, instead,

one may ask whether constant width linear size BPs are testable. A negative answer
is given in [9]: They show that there is a Boolean function g : {0, 1}n −→ {0, 1} that
is computed by a read-twice constant width oblivious BP and that is not ε-testable
for some fixed ε > 0 (a read-k-times BP is a BP where each variable appears in at
most k levels).

REFERENCES

[1] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy, Efficient testing of large graphs, in
Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society, Los Alamitos, CA, 1999, pp. 656–666.

[2] N. Alon, M. Krivelevich, I. Newman, and M. Szegedy, Regular languages are testable with
a constant number of queries, in Proceedings of the 40th Annual IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society, Los Alamitos, CA, 1999, pp.
645–655.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and the
hardness of approximation problems, J. ACM, 45 (1998), pp. 501–555.

[4] D. M. Barrington, Bounded-width polynomial-size branching programs recognize exactly those
languages in NC1, J. Comput. System Sci., 38 (1989), pp. 150–164.

[5] P. Beame, M. Saks, and J. S. Thathachar, Time-space tradeoffs for branching programs, in
Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science,
IEEE Computer Society, Los Alamitos, CA, 1998, pp. 254–263.

[6] M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with applications to numerical
problems, J. Comput. System Sci., 47 (1994), pp. 549–595.

[7] R. B. Boppana and M. Sipser, The complexity of finite functions, in Handbook of Theoretical
Computer Science, Vol. A: Algorithms and Complexity, Elsevier, Amsterdam, 1990, pp.
757–804.

[8] A. Cobham, The recognition problem for the set of perfect squares, in Proceedings of the 7th
IEEE Symposium on Switching and Automata Theory, Berkeley, CA, 1966, pp. 78–87.

[9] E. Fischer and I. Newman, Functions that have read-twice, constant width, branching pro-
grams are not necessarily testable, to appear in the International Workshop on the Aspects
of Complexity and Its Applications, University of Rome La Sapienza, Rome, Italy, 2002.

[10] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson, Self-testing/
correcting for polynomials and for approximate functions, in Proceedings of the 23rd ACM
Symposium on Theory of Computing, ACM, New York, 1991, pp. 32–42.

1570 ILAN NEWMAN

[11] O. Goldreich, S. Goldwasser, and D. Ron, Property testing and its connections to learning
and approximation, J. ACM, 45 (1998), pp. 653–750.

[12] J. Hartmanis, P. L. Lewis II, and R. E. Stearns, Hierarchies of memory-limited computa-
tions, in Proceedings of the 6th IEEE Symposium on Switching Circuits and Logic Design,
IEEE Computer Society, Los Alamitos, CA, 1965, pp. 179–190.

[13] S. Jukna, A. A. Razborov, P. Savick, and I. Wegner, On P versus NP ∩ co−NP for deci-
sion trees and read-once branching programs, in Mathematical Foundations of Computer
Science, Springer-Verlag, Berlin, 1997, pp. 319–326.

[14] C. Papadimitriou, Computational Complexity, Addison–Wesley, Reading, MA, 1994, exercises
2.8.11 and 1.8.12, pp. 54–55.

[15] M. Parnas, D. Ron, and R. Rubinfeld, Testing parenthesis languages, in Proceedings of
APPROX/RANDOM 2001, Lecture Notes in Comput. Sci. 2129, Springer-Verlag, New
York, 2001, pp. 261–272.

[16] R. Rubinfeld and M. Sudan, Robust characterizations of polynomials with applications to
program testing, SIAM J. Comput., 25 (1996), pp. 252–271.

