
Space Complexity vs. Query Complexity∗

Oded Lachish † Ilan Newman ‡ Asaf Shapira §

Abstract

Combinatorial property testing deals with the following relaxation of decision problems: Given
a fixed property and an input x, one wants to decide whether x satisfies the property or is “far”
from satisfying it. The main focus of property testing is in identifying large families of properties
that can be tested with a certain number of queries to the input. Unfortunately, there are nearly
no general results connecting standard complexity measures of languages with the hardness of
testing them. In this paper we study the relation between the space complexity of a language and
its query complexity. Our main result is that for any space complexity s(n) ≤ log n there is a
language with space complexity O(s(n)) and query complexity 2Ω(s(n)). We conjecture that this
exponential lower bound is best possible, namely that the query complexity of a languages is at
most exponential in its space complexity.

Our result has implications with respect to testing languages accepted by certain restricted
machines. Alon et al. [FOCS 1999] have shown that any regular language is testable with a
constant number of queries. It is well known that any language in space o(log log n) is regular,
thus implying that such languages can be so tested. It was previously known that there are
languages in space O(log n) that are not testable with a constant number of queries and Newman
[FOCS 2000] raised the question of closing the exponential gap between these two results. A
special case of our main result resolves this problem as it implies that there is a language in
space O(log log n) that is not testable with a constant number of queries, thus showing that
the o(log log n) bound is best possible. It was also previously known that the class of testable
properties cannot be extended to all context-free languages. We further show that one cannot
even extend the family of testable languages to the class of languages accepted by single counter
machines which is perhaps the weakest (uniform) computational model that is strictly stronger
than finite state automata.

1 Introduction

1.1 Basic Definitions

Combinatorial property testing deals with the following relaxation of decision problems: for a fixed
property P, given an input x, one wants to decide whether x satisfies P or is “far” from satisfying

∗A preliminary version of this paper appeared in the Proc. of the 10th International Workshop on Randomization
and Computation (RANDOM), 2006, 426-437.

†University of Haifa, Haifa, Israel, loded@cs.haifa.ac.il.
‡University of Haifa, Haifa, Israel, ilan@cs.haifa.ac.il. Research was supported by the Israel Science Foundation

(grant number 55/03)
§Microsoft Research, Email: asafico@tau.ac.il. Part of this work was done while the author was a PhD student at

the School of Computer Science, Tel Aviv University, Tel Aviv, Israel.

the property. This notion was first introduced in the work of Blum, Luby and Rubinfeld [5], and was
explicitly formulated for the first time by Rubinfeld and Sudan [18]. Goldreich, Goldwasser and Ron
[9] have started a rigorous study of what later became known as “combinatorial property testing”.
Since then much work has been done, both on designing efficient algorithms for specific properties,
and on identifying natural classes of properties that are efficiently testable. For detailed surveys on
the subject see [6, 8, 16, 17].

In this paper we focus on testing properties of strings, or equivalently languages 1. In this case a
string of length n is ε-far from satisfying a property P if at least εn of the string’s entries should be
modified in order to get a string satisfying P. An ε-tester for P is a randomized algorithm that given
ε and the ability to query the entries of an input string, can distinguish with high probability (say
2/3) between strings satisfying P and those that are ε-far from satisfying it. The query complexity
q(ε, n) is the maximum number of queries the algorithm makes on any input of length n. Property
P is said to be testable with a constant number of queries if q(ε, n) can be bounded from above by
a function of ε only. For the sake of brevity, we will sometimes say that a language is easily testable
if it can be tested with a constant number of queries 2.

If a tester accepts with probability 1 inputs satisfying P then it is said to have a 1-sided error. If
it may err in both directions then it is said to have 2-sided error. A tester may be adaptive, in the
sense that its queries may depend on the answers to previous queries, or non-adaptive, in the sense
that it first makes all the queries, and then makes its final decision using the answers to these queries.
All the lower bounds we prove in this paper hold for the most general testers, namely, 2-sided error
adaptive testers.

1.2 Background

One of the most important questions in the field of property testing is to prove general testability
results, and more ambitiously to classify the languages that are testable with a certain number of
queries. While in the case of (dense) graph properties, many general results are known (see [2]
and [3]) there are not too many general results for testing languages that can be decided in certain
computational models. Our investigation is more related to the connection between certain classical
complexity measures of languages and the hardness of testing them, which is measured by their query
complexity as defined above. A first result in this direction was obtained by Alon et al. [1] were it
was shown that any regular language is easily testable. In fact, it was shown in [1] that any regular
language can be tested with an optimal constant number of queries Θ(1/ε) (the hidden constant
depends on the language). It has been long known (see Exercise 2.8.12 in [14]) that any language
that can be recognized in space 3 o(log log n) is in fact regular. By the result of [1] this means that
any such language is easily testable. A natural question is whether it is possible to extend the family
of easily testable languages beyond those with space complexity o(log log n). It was (implicitly)
proved in [1] that there are properties in space O(log n) that are not easily testable (see Theorem 4

1It will sometimes be convenient to refer to properties P of strings as languages L, as well as the other way around,
where the language associated with the property is simply the set of strings that satisfy the property.

2We note that some papers use the term easily testable to indicate that a language is testable with poly(1/ε) queries.
3Throughout this paper we consider only deterministic space complexity. Our model for measuring the space

complexity of the algorithm is the standard Turing Machine model, where there is a read only input tape, and a work
tape where the machine can write. We only count the space used by the work tape. See [14] for the precise definitions.
For concreteness we only consider the alphabet {0, 1}.

2

below), and Newman [13] raised the question of closing the exponential gap between the o(log log n)
space positive result and the Ω(log n) space negative result. Another natural question is whether the
family of easily testable languages can be extended beyond those of regular languages by considering
stronger machines. Newman [13] has considered non-uniform extensions of regular languages and
showed that any language that can be accepted by read-once branching programs of constant width
is easily testable. Fischer and Newman [7] showed that this can not be further extended even to
read twice branching programs of constant width. For the case of uniform extensions, it has been
proved in [1] that there are context-free languages that are not easily testable (see [15] for additional
results).

In this paper we study the relation between the space complexity and the query complexity of a
language. As a special case of this relation we resolve the open problem of Newman [13] concerning
the space complexity of the easily testable languages by showing O(log log n) space sets that are
not easily testable. We also show that the family of easily testable languages cannot be extended
to single-counter automata, which seems like the weakest (natural) generalization of finite state
automata.

1.3 Main Results

As we have discussed above there are very few known connections between standard complexity
measures and query complexity. Our first and main investigation in this paper is about the relation
between the space complexity of a language and the query complexity of testing it. Our main result
shows that in some cases the relation between space complexity and query complexity may be at
least exponential. As we show in Theorem 2 below, there are languages whose space complexity
is O(log n) and whose query complexity is Ω(n). Also, as we have previously noted, languages
whose space complexity is o(log log n) can be tested with Θ(1/ε) queries. Therefore, the interesting
space complexities s(n) that are left to deal with are in the “interval” [Ω(log log n), O(log n)]. For
ease of presentation it will be more convenient to assume that s(n) = f(log log n) for some integer
function x ≤ f(x) ≤ 2x. As in many cases, we would like to rule out very “strange” complexity
functions s(n). We will thus say that s(n) = f(log log n) is space constructible if the function f
is space constructible, that is, if given the unary representation of a number x it is possible to
generate the binary representation of f(x) using space O(f(x)). Note that natural functions, such
as s(n) = (log log n)2 and s(n) =

√
log n are space constructible 4. The following is the main result

of this paper.

Theorem 1 (Main Result) Let s(n) be any (space constructible) space complexity function satis-
fying log log n ≤ s(n) ≤ 1

10 log n. Then, there is a language in space O(s(n)), whose query complexity
is 2Ω(s(n)).

We believe it will be interesting to further study the relation between the space complexity and
the query complexity of a language. Specifically, we raise the following conjecture claiming that the
lower bound of Theorem 1 is best possible:

Conjecture 1 Any language in space s(n) can be tested with query complexity 2O(s(n)).
4We note that the notion of space constructibility (of f) that we use here is the standard one, see e.g. [14]. Observe

that when s(n) = (log log n)2 we have s(n) = f(log log n) where the function f is f(x) = x2 and when s(n) =
√

log n
we have s(n) = f(log log n) where the function f is f(x) = 2x/2.

3

Note that Theorem 1 asserts, as a special case, the existence of languages of logarithmic space
complexity and query complexity nΩ(1). As we have mentioned above, we also prove the following
stronger result that may be of independent interest.

Theorem 2 There is a language in space O(log n) whose query complexity Ω(n).

To the best of our knowledge, the lowest complexity class that was previous known to contain a
language whose query complexity is Ω(n), is P (see [9]). If Conjecture 1 is indeed true then Theorems
1 and 2 are essentially best possible.

As an immediate application of Theorem 1 we deduce the following corollary, showing that the
class of easily testable languages cannot be extended from the family of regular languages even to
the family of languages with space complexity O(log log n).

Corollary 1 For any k > 0, there is a language in space O(log log n), whose query complexity is
Ω(logk n).

Corollary 1 rules out the possibility of extending the family of easily testable languages from
regular languages, to the entire family of languages whose space complexity is O(log log n), thus
answering the problem raised by Newman in [13] concerning the space complexity of easily testable
languages.

We turn to address another result, ruling out another possible extension of regular languages.
As we have mentioned before, it has been first shown in [1] (see also [15] for further results) that
there are context-free languages that are not easily testable. Hence, a natural question is whether
there exists a uniform computational model stronger than finite state machines and weaker than
stack machines such that all the languages that are accepted by machines in this model are easily
testable. Perhaps the weakest uniform model within the class of context-free languages is that of
a deterministic single-counter automaton (also known as one-symbol push-down automaton). A
deterministic single-counter automaton is a finite state automaton equipped with a counter. The
possible counter operations are increment, decrement and do nothing, and the only feedback from
the counter is whether it is currently 0 or positive (larger than 0). Such an automaton, running
on a string ω reads an input character at a time, and based on its current state and whether the
counter is 0, moves to the next state and increments/decrements the counter or leaves it unchanged.
Such an automaton accepts a string ω if starting with a counter holding the value 0 it reads all
the input characters and ends with the counter holding the value 0. It is quite obvious that such
an automaton is equivalent to a deterministic push-down automaton with one symbol stack (and a
read-only bottom symbol to indicate empty stack).

Deterministic single-counter automata can recognize a very restricted subset of context free lan-
guages. Still, some interesting languages are recognized by such an automaton, e.g. D1 the first
Dyck language, which is the language of balanced parentheses. It was shown in [3] that D1 is easily
testable and that more general parenthesis languages (which cannot be recognized by single counter
automata) are not easily testable. It was later shown in [15] that testing the more general parenthesis
languages requires Ω(n1/11) queries, but can still be carried out using a sub-linear O(n2/3) number
of queries. Formal definition and discussion on variants of counter automata can be found in [20].

In this paper we also prove the following theorem showing that the family of easily testable
languages cannot be extended even to those accepted by single-counter automata.

4

Theorem 3 There is a language that can be accepted by a deterministic single-counter automaton
and whose query complexity is Ω(log log n).

Combining Theorem 3 and Corollary 1 we see that in two natural senses the family of easily
testable languages cannot be extended beyond that of the regular languages.

Organization: The rest of the paper is organized as follows. In Section 2 we prove the exponential
relation between space complexity and query complexity of Theorem 1. In Section 3 we prove
Theorem 2. Section 4 contains the proof of Theorem 3 showing that there are languages accepted
by counter machines that are not easily testable. Section 5 contains some concluding remarks and
open problems.

2 Space Complexity vs. Query Complexity

In this section we prove that languages in space s(n) may have query complexity exponential in
s(n). To this end, we will need a language L whose space complexity is O(log n) and whose query
complexity is Ω(nα) for some positive α. Of course, Theorem 2 supplies such an example, but (though
possible) it will be hard to use Theorem 2 as we will need to refer to specific values of n for which
it is hard to test L. It will be more convenient to apply a result of Alon et al. [1] who have shown
that the query complexity of testing the language vvRuuR is Ω(

√
n) (the string vR is the “reverse”

of v). Moreover, they showed that the lower bound holds for all inputs whose size is divisible by 6
(see the proof in [3]). As it is easy to see that the language vvRuuR is in space O(log n), we thus get
the following.

Theorem 4 (Implicit in [1]) There is a language L, whose space complexity is O(log n), such that
for some ε0 and all n divisible by 6, the query complexity of an ε0-tester of L for inputs of length n,
is Ω(

√
n).

We start with a toy example of the proof of Theorem 1 for the case s(n) = log log n and then
turn to consider the general case. Consider the following language L: a string x ∈ {0, 1,#}n is
in L if it is composed of n/ log n blocks of size log n each, separated by the # symbol, such that
each block is a word of the language of Theorem 4. It can be shown that the query complexity of
testing L is Ω(

√
log n). As the language of Theorem 4 can be recognized using logarithmic space it

is clear that if the blocks of an input are indeed of length O(log n), then we can recognize L using
space O(log log n); we just run the logarithmic space algorithm on each of the blocks, whose length is
O(log n). This “seems” to give an exponential relation between the space complexity and the query
complexity of L. Of course, the problem is that the above algorithm is not really an O(log log n)
space algorithm, as if the blocks are not of the right length then it may be “tricked” into using too
much space. We thus have to add to the language some “mechanism” that will allow us to check
if the blocks are of the right length. This seems to be impossible as we seem to need to initiate a
counter that will hold the value log n, but we need to do so without using more than O(log log n)
space, and just holding the value n requires Θ(log n) bits.

The following language will allow us to “initiate” a counter holding the value log n while using
space O(log log n): consider the language B, which is defined over the set of symbols {0, 1, ∗} as
follows: for every integer r ≥ 1, the language B contains the string sr = binr(0) ∗ binr(1) ∗ . . . ∗

5

binr(2r −1)∗, where binr(i) is the binary representation of the integer i of length precisely r (that is,
with possibly leading 0’s). Therefore, for every r there is precisely one string in B of length (r+1)2r.
This language is the standard example for showing that there are languages in space O(log log n)
that are not regular (see [14] Exercise 2.8.11). To see that B can indeed be accepted by a machine
using space O(log log n) note that again the wrong way to do so is to verify that the strings between
consecutive ∗ symbols are the binary representations of consecutive integers, because if the string
does not belong to B we may be tricked into using space Ω(log n) (for example, if one of the strings
is of length more than poly(log n)). In order to “safely” verify that a string belongs to B we check
in the ith step that the last i bits in the blocks form an increasing sequence modulo 2i and that all
blocks are of length i. We also check that in the last step we get an increasing sequence. This way
in the ith step we use space O(log i), and it is easy to see that we never use more than O(log log n)
space.

Recall that we have previously mentioned that one would like to initiate a counter with value
(close to) log n while using space O(log log n). Note that after verifying that a string x of length n
belongs to B (while using space O(log log n)), we are guaranteed that the number of entries before
the first ∗ symbol is close to log n. We will thus want to “incorporate” that language B into the
above language L in order to get a language that is both (relatively) hard to test, and (relatively)
easy to recognize, in terms of space complexity. From now on we will deal with general space
complexity functions s(n). We remind the reader that we confine ourselves to functions s(n) satisfying
log log n ≤ s(n) ≤ 1

10 log n that can be written as s(n) = f(log log n) for some space constructible
function f satisfying x ≤ f(x) ≤ 2x.

The main idea for the proof of Theorem 1 is to “interleave” the language B with a language
consisting of blocks of length (roughly) 6s(n) of strings from the language of Theorem 4 (where
log log n ≤ s(n) ≤ log n). This second language will be the obvious generalization of the language
L discussed above for the case s(n) = log log n. For ease of presentation the language we construct
to prove Theorem 1 is over the alphabet {0, 1,#, ∗}. It can easily be converted into a language over
{0, 1} with the same asymptotic properties by encoding each of the 4 symbols using 2 bits. The
details follow.

Let L be the language of Theorem 4 and let s(n) satisfy s(n) = f(log log n) for some space
constructible function n ≤ f(n) ≤ 2n. In what follows, let us set for any integer r ≥ 1

n(r) = 2(r + 1)2r.

Given a function f as above, we define a language Lf as the union of families of strings Xn(r),
consisting strings of length n(r). A string x ∈ {0, 1,#, ∗}n(r) belongs to Xn(r) if it has the following
two properties:

1. The odd entries of x form a string from B (thus the odd entries are over {0, 1, ∗}).

2. In the even entries of x, substrings between consecutive # symbols 5 form a string from L
whose size is precisely k, where k = 6f(blog rc). The only exception is the last block for which
the only requirement is that it would be of length at most k (thus these entries of the string
are over {0, 1,#}).

5The first # symbol is between the first block and the second block.

6

Note that the strings from L, which appear in the even entries of strings belonging to Xn(r) all
have length 6f(blog rc). As indicated above, we now define Lf as the union of the sets Xn(r)

Lf =
∞⋃

r=1

Xn(r) . (1)

Let us also define
Kf = {6f(blog rc) : r ∈ N} , (2)

and observe that the words from L, which appear in the even entries of strings belonging to Lf ,
all have lengths that belong to the set Kf . Define the language Lf as the subset of L consisting of
words whose length belongs to the set Kf , that is

Lf = {x ∈ L : |x| ∈ Kf}. (3)

For future reference, let us recall that Theorem 4 guarantees that L has query complexity Ω(
√

n) for
all integers n divisible by 6. We thus get the following:

Claim 2.1 For some ε0 > 0, every ε0-tester of Lf has query complexity Ω(
√

n).

We now turn to prove the main claims needed to obtain Theorem 1.

Claim 2.2 The language Lf has space complexity O(s(n)) = O(f(log log n)).

Proof: To show that Lf is in space O(f(log log n)) = O(s(n)) we consider the following algorithm
for deciding if an input x belongs to Lf . We first consider only the odd entries of x and use the
O(log log n) space algorithm for deciding if these entries form a string from B. If they do not we
reject and if they do we move to the second step. Note, that at this step we know that the input’s
length n is 2(r + 1)2r for some r ≤ log n. In the second step we initiate a binary counter that stores
the number blog rc ≤ log log n. Observe, that the algorithm can obtain r by counting the number of
odd entries between consecutive ∗ symbols, and that we need O(log log n) bits to hold r. We then
initiate a counter that holds the value k = 6f(blog rc), using space O(f(blog rc)) by exploiting the fact
that f is space constructible 6. We then verify that the number of even entries between consecutive
symbols is k, except the last block for which we check that the length is at most k. Finally, we
run the logarithmic space algorithm of L in order to verify that the even entries between consecutive
symbols form a string from L (except the last block).

The algorithm clearly accepts a string if and only if it belongs to Lf . Regarding the algorithm’s
space complexity, recall that we use an O(log log n) space algorithm in the first step (this algorithm
was sketched at the beginning of this section). Note, that after verifying that the odd entries form
a string from the language B, we are guaranteed that r ≤ log n. The number of bits needed to store
the counter we use in order to hold the number k = 6f(blog rc) is O(f(blog rc)) = O(f(log log n)) =
O(s(n)) as needed. Finally, as each block is guaranteed to be of length 6f(blog rc), the logarithmic
space algorithm that we run on each of the blocks uses space O(log(6f(blog rc))) = O(f(blog rc)) =
O(f(log log n)) = O(s(n)), as needed.

6More precisely, given the binary encoding of blog rc we form an unary representation of blog rc. Such a represen-
tation requires O(log log n) bits. We then use the space constructibility of f to generate a binary representation of
f(blog rc) using space O(f(blog rc)). Finally, given the binary representation of f(blog rc) it is easy to generate the
binary representation of 6f(blog rc) using space O(f(blog rc)).

7

Claim 2.3 The language Lf has query complexity 2Ω(f(log log n)) = 2Ω(s(n)).

Proof: By Claim 2.1, for some fixed ε0, every ε0-tester for Lf has query complexity Ω(
√

n). We
claim that this implies that every ε0

3 -tester for Lf has query complexity 2Ω(f(log log n)). The idea is
to take a tester for Lf and use it to devise a tester for Lf , using a simple simulation argument. To
this end we will need to take an input x to the tester for Lf and implicitly construct an input x′ for
the tester of Lf in a way that if x ∈ Lf then x′ ∈ Lf and if x is far from Lf then x′ is far from Lf .

Let T be an ε0
3 -tester for Lf and consider the following ε0-tester T for Lf : Given an input x,

the tester T immediately rejects x in case there is no integer r for which |x| = 6f(blog rc) (recall
that the strings of Lf are all taken from Kf as defined in (2)). In case such an integer r exists, set
n = 2(r + 1)2r. The tester T now implicitly constructs the following string x′ of length n. The odd
entries of x′ will contain the unique string of B of length (r+1)2r. The even entries of x′ will contain
repeated copies of x separated by the # symbol (the last block may contain some prefix of x). Note
that if x ∈ Lf then x′ ∈ Lf . Furthermore, observe that if x is ε-far from Lf then x′ is (ε

2 − o(1))-far
from Lf , because in the even entries of x′, one needs to change an ε-fraction of the entries in the
substring between consecutive # symbols, in order to get a word from Lf (the o(1) term is due to
the fraction of the string occupied by the # symbols that need not be changed). This means that
it is enough for T to simulate T on x′ with error parameter ε0

3 and thus return the correct answer
with high probability. Of course, T cannot construct x′ “for free” because to do so T must query all
entries of x. Instead, T only answers the oracle queries that T makes as follows: given a query of T
to entry 2i− 1 of x′, the tester T will supply T with the ith entry of the unique string of B of length
(r + 1)2r. Given a query of T to entry 2i of x′, the tester T will supply T with the jth entry of x,
where j = i (mod |x|+ 1). To this end, T will have to perform a query to the entries of x.

We thus get that if Lf has an ε0
3 -tester making t queries on inputs of length 2(r + 1)2r, then Lf

has an ε0-tester making t queries on inputs of length 6f(blog rc). We know by Claim 2.1 that the query
complexity of any ε0-tester of Lf on inputs of length 6f(blog rc) is Ω(

√
6f(blog rc)). This means that

the query complexity of T on the inputs x′ we described must also be Ω(
√

6f(blog rc)). The lengths
of these inputs is n = 2(r + 1)2r. This means that r = log n − Θ(log log n) and therefore the query
complexity on these inputs is

Ω(
√

6f(blog rc)) = 2Ω(f(log log n−2)) = 2Ω(f(log log n)),

where in the last equality we used the fact that f(x) ≤ 2x.

Proof of Theorem 1: Take the language Lf and apply Claims 2.2 and 2.3.

3 Proof of Theorem 2

The proof of Theorem 2 uses dual-codes of asymptotically good linear codes over GF (2), which are
based on Justesen’s construction [10]. We begin with some brief background from Coding Theory
(see [12] for a comprehensive background). A linear code C over GF (2) is just a subset of {0, 1}n that
forms a linear subspace. The (Hamming) distance between two words x, y ∈ C, denoted d(x, y), is the
number of indices i ∈ [n] for which xi 6= yi. The distance of the code, denoted d(C) is the minimum
distance over all pairs of distinct words of C, that is d(C) = minx 6=y∈C d(x, y). The size of a code,

8

denoted |C| is the number of words in C. The dual-code of C, denoted C⊥ is the linear subspace
orthogonal to C, that is C⊥ = {y : 〈x, y〉 = 0 for all x ∈ C}, where 〈x, y〉 =

∑n
i=1 xiyi (mod 2) is

the dot product of x and y over GF (2). The generator matrix of a code C is a matrix G whose rows
span the subspace of C. Note, that a code is a family of strings of fixed size n and our interest is in
languages containing strings of unbounded size. We will thus have to consider families of codes of
increasing size. The following notion will be central in the proof of Theorem 2:

Definition 3.1 (Asymptotically Good Codes) An infinite family of codes C = {Cn1 , Cn2 , . . .},
where Cni ⊆ {0, 1}ni, is said to be asymptotically good if there exist positive reals 0 < d, r < 1 such
that lim infi→∞

d(Cni)

ni
≥ d and lim infi→∞

log(|Cni |)
ni

≥ r.

We note that in the coding literature, the above reals d and r are sometimes referred to as the
relative distance and relative rate of a code, respectively. We turn to discuss the main two lemmas
needed to prove Theorem 2. The first is the following:

Lemma 3.2 Suppose C = {Cn1 , Cn2 , . . .} is an asymptotically good family of linear codes, and set
L =

⋃∞
i=1 C⊥

ni
. Then, for some ε0, the query complexity of ε0-testing L is Ω(n).

Lemma 3.2 is essentially a folklore result. Its (simple) proof relies on the known fact that if C is a
linear code with distance t then C⊥ is a t-wise independent family, that is, if one uniformly samples a
string from C⊥ then the distribution induced on any t coordinates is the uniform distribution. Such
families are sometimes called in the coding literature orthogonal array of strength t, see [12]. The
fact that the codes in C satisfy log(|Cni |)

ni
≥ r implies that |C⊥| ≤ 2(1−r)ni giving that a random string

is with high probability far from belonging to C⊥
ni

. These two facts allow us to apply Yao’s principle
to prove that even adaptive testers must use at least Ω(n) queries in order to test L for some fixed
ε0. For completeness we sketch below the proof of Lemma 3.2. As pointed to us by Eli Ben-Sasson,
Lemma 3.2 can also be proved by applying a general non-trivial result about testers for membership
in linear codes (see Theorem 3.3 in [4] for more details).

A well known construction of Justesen [10] gives an asymptotically good family of codes. By
exploiting the fact that for appropriate prime powers n, one can perform arithmetic operations over
GF (n) in space O(log n), one can use the main idea of [10] in order to prove the following:

Lemma 3.3 There is an asymptotically good family of linear codes C = {Cn1 , Cn2 , . . .} and an
algorithm, with the following property: Given integers n, i and j, the algorithm generates entry i, j
of the generator matrix of Cn, while using space O(log n).

Apparently this result does not appear in any published paper. However, most details of the
construction appear in Madhu Sudan’s lecture notes [19]. For the sake of completeness we sketch a
self contained proof, which is somewhat simpler than the one based on Justesen’s [10] construction
as it doesn’t use code ensembles. Theorem 2 will follow by a simple application of Lemmas 3.2 and
3.3.

Proof of Lemma 3.2: Consider any integer ni and let us henceforth refer to it as n. In order to
show the lower bound for testing words of length n, we will apply Yao’s principle, according to which
it is enough to show that there is a distribution of inputs D of length n, such that any deterministic

9

adaptive ε0-tester, making o(n) queries, will err on the inputs generated by D with probability
larger than 1/3. Consider the distribution D, where with probability 1

2 we generate a string using
a distribution DN , which consists of strings that are typically far from L, and with probability 1

2
we generate a string using a distribution DP , which consists of strings that are typically far from
L. The distribution DN generates random strings from {0, 1}n, while DP generates random strings
from C⊥

n .
Let A be any deterministic 1

2r-tester making q < dn queries, where d and r are the constants
appearing in Definition 3.1. Consider a representation of A as binary decision tree of depth q. Each
vertex is labelled with an index 1 ≤ i ≤ n, representing the query the algorithm makes. Each leaf
of the tree is represented with either “accept” or “reject” (remember that A is deterministic). Note
that the probability of reaching any fixed leaf of the tree given that a string is generated by DN is
precisely (1

2)q. It is well known (see [12], Chapter 1, Theorem 10) that if d(Cn) ≥ dn then C⊥
n is a

dn-wise independent family, namely, if we generate a random string from C⊥
n then the distribution

induced on any set of dn coordinates is the uniform one. Therefore, the probability of reaching any
fixed leaf of the tree of A given that a string is generated by DP is also precisely (1

2)q. Let rP be
the probability of rejecting a string generated by DP and rN be the probability of rejecting a string
generated by DN . By the above discussion we get that rN = rP .

As Cn is a linear subspace containing at least 2rn strings, where r is the constant from Definition
3.1, we get that its dual subspace C⊥

n contains at most 2(1−r)n words. By the union bound, this
means that the probability that a string generated by DN is 1

2r-close to C⊥
n is at most

2−n · |C⊥
n |

1
2
rn∑

i=1

(
n

i

)
≤ 2−n2(1−r)n2

2
3
rn = o(1).

Therefore, with probability 1 − o(1) a string generated by DN is r
2 -far from L. Let a′N denote the

probability of (incorrectly) accepting an input generated by D given that it is 1
2r-far from L. We

thus get that a′N = 1 − rN − o(1). This, together with the fact that rN = rP , implies that the
probability of A erring on D is 1

2rP + 1
2a′N = 1

2rP + 1
2(1− rN − o(1)) = 1

2 − o(1) > 1/3.

Proof of Lemma 3.3 (sketch): We use code concatenation (see [12]) in order to reduce the size
of the domain of a Reed-Solomon code. We do this repeatedly until the domain/alphabet is small
enough to allow us to use logarithmic space while exhaustively looking for an asymptotically good
code. We start with an [n, n/2, n/2]n Reed-Solomon code 7, whose generator matrix can clearly
be constructed in space O(log n). We now concatenate this code with another (appropriate) Reed-
Solomon code in order to reduce the domain size to O(log n) and then concatenate with another
Reed-Solomon code in order to reduce the domain size to O(log log n). The properties of code
concatenation guarantee that the resulting code C2 has relative distance and relative rate at least
1/8. As the domain size of C2 is q = O(log log n) we can now use exhaustive search to find a code
C3 mapping binary strings of length log q = O(log log log n) to binary strings of length (say) 4 log q
and whose distance is 1/4. Moreover this computation can clearly be carried in space O(log n). The
concatenated code C2 ◦C3 is therefore over {0, 1}, its distance is 1/32 and its rate is also 1/32. This
code satisfies the requirements of Lemma 3.3.

7An [n, k, d]q code is a mapping C : Σk → Σn, where Σ is a domain of size q with the property that for every x 6= y
we have d(C(x), C(y)) ≥ d. See [12] for more details.

10

Proof of Theorem 2: Let L = {Cn1 , Cn2 , . . .} be the family of codes guaranteed by Lemma 3.3
and as in Lemma 3.2 define L =

⋃
i C

⊥
ni

. By Lemma 3.2 L has query complexity Ω(ni) for all the
integers ni. To show that L can be recognized with space O(log n) we rely on Lemma 3.3: given an
input x ∈ {0, 1}ni we accept if and only if x ∈ C⊥

ni
. This can be achieved by accepting if and only

if Mx = 0, where M is the generator matrix of Cni . Note, that we can compute each of the entries
of Mx sequentially, while reusing space by iteratively multiplying x by the rows of M and verifying
that they all equal 0 over GF (2). In order to verify that the inner product of x and the tth row of
M is 0, we sequentially generate the entries Mt,1, . . . ,Mt,n and multiply them by the corresponding
entries of x. Note, that at each stage we only have to keep one bit, which is the current sum of∑j

k=1 xkMt,k over GF (2). Apart from that we only have to keep the indices t and j and the space
needed to generate the entries on M . The total is space O(log n).

4 Testing Counter Machine Languages May Be Hard

4.1 Proof overview

In this section we define a language L that can be decided by a deterministic single-counter automaton
and prove an Ω(log log n) lower bound on the query complexity of adaptive 2-sided error testers for
testing membership in L. We start with defining the language L.

Definition 4.1 L is the family of strings s ∈ {0, 1}∗ such that s = 0k11k10k21k2 . . . 0ki1ki for some
integer i and some sequence of integers k1, . . . , ki. For every integer n we set Ln = L ∩ {0, 1}n.

We proceed with the proof of Theorem 3 using the above language L. First note that one
can easily see that L can be accepted by a deterministic single-counter automaton (as defined in
Subsection 1.3). What we are left with is thus to prove the claimed lower bound on testing L. Note
that any adaptive tester of a language L ⊆ {0, 1}∗ with query complexity q(ε, n) can be simulated
by a non-adaptive tester with query complexity 2q(ε,n). Therefore, in order to prove our Ω(log log n)
lower bound, we may and will prove an Ω(log n/ log log n) lower bound that holds for non-adaptive
testers. To this end we apply Yao’s minimax principle, which implies that in order to prove a lower
bound of Ω(log n/ log log n) for non-adaptive testers it is enough to show that there is a distribution
D over legitimate inputs (e.g., inputs from Ln and inputs that are 1

24 -far from Ln), such that for any
non-adaptive deterministic algorithm Alg that makes o(log n/ log log n) queries, the probability that
Alg errs on inputs generated by D is at least 1/3.

As in many applications of Yao’s principle, the overall strategy for constructing the distribution
D is to define D as a “mixture” of two distributions DP , which consists of instances that satisfy
L, and DN , which consists of instances that are far from satisfying L. As in other cases, what we
need to show is that a low query-complexity algorithm has a very small probability of distinguishing
between instances generated by DP and instances generated by DN . To this end, one usually needs
to show that unless the algorithm finds “something” in the input, the two distributions look exactly
the same.

We start with describing the key “gadget” of the proof. We then give an overview of why this
gadget is indeed helpful for obtaining the lower bound. Afterwards we give the formal details. For

11

any positive integer ` let us define the following two pairs of strings 8:

BAD` =
{

0` 1` 0` 1` 0` 1` 1` 1` 0` 0` 0` 1`,
0` 0` 1` 1` 0` 0` 0` 1` 0` 1` 1` 1`

}

GOOD` =
{

0` 0` 1` 1` 0` 0` 1` 1` 0` 0` 1` 1`,
0` 1` 0` 1` 0` 1` 0` 1` 0` 1` 0` 1`

}
Note, that for any ` each of the four strings is of length 12`. We refer to strings selected from these
sets as ’phrase strings’. We view the phrase strings as being composed of twelve disjoint intervals
of length `, which we refer to as ‘phrase segments’. By the definition of the ‘phrase strings’ each
‘phrase segment’ is an homogeneous substring (that is, all its symbols are the same).

The reader should note that for any `, the four strings in BAD` and GOOD` have the following
two important properties: (i) The four strings have the same (boolean) value in phrase segments
1, 4, 5, 8, 9 and 12. (ii) In the other phrase segments, one of the strings in BAD` has the value 0 and
the other has value 1, and the same applies to GOOD`. The idea behind the construction of D and the
intuition of the lower bound is that in order to distinguish between a string chosen from BAD` and a
string chosen from GOOD` one must make queries into two distinct phrase segments. The reason is
that by the above observation, even if one knows `, if all the queries belong to segment i ∈ [12], then
either the answers are all identical and are known in advance (in case i ∈ {1, 4, 5, 8, 9, 12}), or they
are identical and have probability 1/2 to be either 0 or 1, regardless of the set from which the string
was chosen. Thus, queries into two different phrase segments are needed for distinguishing GOOD
from BAD. As we now explain, we add another mechanism that will make it hard for a tester, who
does not know `, to make such a pair of queries into two distinct phrase segments (for example 10
and 11).

In the construction of the “hard” distribution D we select with probability 1/2 whether the string
we choose will be a positive instance (a string in Ln) or a negative instance (a string 1

24 -far from
Ln). We select a positive instance by distribution DP over {0, 1}n that is defined as follows:

1. Uniformly select an integer s ∈ [3, blog nc − 3] and set ` = 2s and r = d n
24`e.

2. For each i ∈ [r] set Bi = 0bi1biβi, where bi is uniformly and independently selected from
[`/4, . . . , `/2] and βi is uniformly and independently selected from Good`. We refer to Bi as the
ith ‘block string‘. We refer to the substring 0bi1bi as the ‘buffer string‘ and βi as the ’phrase’.

3. Set α = B1 · · ·Br0t1t, where t = (n−
∑r

i=1 |Bi|)/2.

We select a negative instance by distribution DN that is defined in the same manner as DP with the
exception that in the second stage we select strings from BAD` instead of GOOD`.

Recall the only way to distinguish whether a string generated by D is a positive instance or a
negative instance is if at least two queries are located in the same phrase string, but in different
phrase segments. Obviously, for two queries q1 < q2 to be in the same phrase string it must be that
q2 − q1 < 12`. Moreover if one wants to ensure that with reasonable probability two queries q1, q2

are in different phrase segments of the same phrase it must be that q2 − q1 ≥ `/ log n. We show this
by generalizing the proof of the following specific case.

8In the proof ` will take values between (roughly) 1 and log n, where n is the length of the string that contains these
substrings.

12

Assume that q2−q1 < `/ log n and that a block string Bi starts at m = q1−3`/2+1. Let t be the
location of the boundary between the first and the second phrase segment of the phrase string in Bi.
By definition t = m + 2bi + `, where 2bi is the length of the buffer string of Bi and ` is the length of
a phrase segment. Observe that in this case the value of t depends only on the choice bi since m and
` are fixed. We also know that t is between q1 and q2 if and only if bi ∈ [`/4, . . . , `/4 + (q2 − q1)/2].
As bi is uniformly selected from [`/4, . . . , `/2], the probability of this event is 2(q2 − q1)/` ≤ 2/ log n.
One should note that in this case the boundary between q1 and q2 is the only one that can fall
between q1 and q2.

4.2 Proof of Theorem 3

We assume in what follows that n ≥ 216 (large enough). We need the following claim showing that
DP and DN are over legitimate inputs.

Claim 4.2 Every instance drawn from DP satisfies Ln. Every instance drawn from DN is 1/24-far
from Ln.

Proof of Claim 4.2 First, note that every string which is generated by DP , is a concatenation of
strings from L (e.g., strings in GOOD` and of the sort 0t1t). Hence, a string drawn from DP belongs
to Ln with probability 1.

Let α be a string selected according to DN . Recall that this means that α contains d n
24`e disjoint

phrase strings each selected from BAD`. We claim that any string in Ln differs from α on at least `
entries of each such substring and hence α is 1/24-far from Ln.

Consider any phrase β ∈ BAD` of α and note that it contains the substring 1`0`13`. We set m
to be the entry in which this substring begins. Let γ be a string in Ln. Assume first that there is
no entry j ∈ {m, . . . ,m + 2`− 1} such that γ is 0 at j and 1 at j − 1. Consequently the substring of
γ whose entries are {m, . . . ,m + 2`− 1} is of the sort 0w12`−w. Now since the substring of α, whose
entries are {m, . . . ,m+2`−1} is 1`0`, we get that α differs from γ on at least ` entries of the phrase
β. Assume that there is an entry j ∈ {m, . . . ,m+2`− 1} such that γ is 0 at j and 1 at j− 1. Recall
that for every string in Ln any maximal sequence of 0’s must be followed by a maximal sequence
of 1’s of the same length. As j is the first entry of a maximal sequence of 0’s in γ the number of
entries in {j, . . . , m + 5`− 1} on which γ is 0 is at least the number of such entries on which γ is 1.
By definition the number of entries in {j, . . . , m + 5` − 1} in which α is 1 is greater by at least 2`
from the number of such entries for which α is 0. Therefore, α differs from γ on at least ` entries in
{j, . . . , m + 5`− 1} (e.g., in β).

Let Alg be any fixed deterministic algorithm that uses d = o(log n/ log log n) queries. We will
show that the error Alg has when trying to distinguish between the case that the input is drawn
from DP and the case it is drawn from the distribution DN is at least 1/3. As the lower bound
is proved for the non-adaptive case, we may assume that the queries Q = {q1, . . . , qd} are fixed in
advance and renumbered such that q1 < q2 . . . < qd. Let ∆i = qi+1 − qi be the distances between
consecutive queries. Our strategy is to show that conditioned on a certain “good” event G, the error
of Alg is actually 1/2. We will then show that the event G happens with very high probability.

Let G be the event that ` and b1, . . . , br (that are selected in Steps 1 and 2 in the definition of
DN and DP) are such that for every 1 ≤ i < j ≤ d, if qi and qj are in the same phrase of α then they

13

are also in the same phrase segment. As a preliminary step towards analyzing event G, let us define
event A as the event that ` chosen according to D is such that each pair of neighboring queries is
either extremely close (relative to `), or extremely far (relative to `). Formally,

A , ∀i ((∆i ≤
`

log n
) ∨ (∆i ≥ 24`)). (4)

Claim 4.3 Prob[A] = 1− o(1).

Proof: Recall that ` = 2s and ∆i = qi+1 − qi for every i ∈ [d]. Set pi = Prob
[

`
log n ≤ ∆i ≤ 24`

]
then

pi = Probs

[
2s

log n
≤ ∆i ≤ 24 · 2s

]
.

Taking log and rearranging terms we get that equivalently

pi = Probs [log ∆i − log 24 ≤ s ≤ log ∆i + log log n] .

Since s is distributed uniformly in [3, blog nc − 3] we have

pi ≤
log log n + log 24

blog nc − 6

By the union bound we have for d = o(log n/ log log n):

Prob[A] ≥ 1−
d∑

i=1

pi = 1− o(1).

Claim 4.4 Prob[G] = 1− o(1).

Proof of Claim 4.4 By Claim 4.3 we know that Prob[A] = 1 − o(1). Therefore, it is enough
to show that Prob [G | A] = 1 − o(1). Note, that the assumption that event A holds only carries
information about s and no information about the integers b1, . . . , br that are chosen in the second
step. Assume then that event A holds and let Q = {q1, . . . , qd} be the queries of the algorithm.
Recall that we numbered the queries such that q1 < q2 < . . . < qd. Consider the following process
for partitioning the set Q: put q1 in a set Q1, and keep adding queries qi into Q1 as long as ∆i

(i.e. the distance between qi and qi−1) is at most `/ log n. If the distance is larger then “open” a
new set Q2, put qi in Q2 and continue as above. Suppose the resulting partition is Q1, . . . , Qp such
that Q1 = {ql1 , . . . , qr1}, Q2 = {ql2 , . . . , qr2}, . . . , Qp = {qlp , . . . , qrp} where for every i ∈ [p] we have
that qli is the smallest query in Qi and qri is the largest query in Qi. As we assume that event A
holds and by the definition of the partition we know that the distance between queries that belong
to different sets is at least 24`. As the length of each phrase string is 12` such pairs do not belong
to the same phrase and we should not worry about them.

Consider now pairs belonging to the same set Qi. We will show that with high probability the
first and last query in each of the sets Qi will belong to the same phrase segment. This will clearly

14

imply that event G holds. Consider for simplicity the set Q1. Think of generating the strings in DN

and DP as an iterative process, where in each iteration we generate an integer bi ∈ [`/4, . . . , `/2] and
then add to the end of the string 0bi1bi concatenated with a string βi from either BAD` or GOOD`.
This means that in each iteration the length of the string grows by at least 25`/2 and at most 13`
and the `/2 locations after it are in a buffer string. Assume that the length p of the current string
is in [ql1 − 13`, . . . , qr1 − `] and that Bi is the block string that starts at p. Note that now only
the choice of bi determines whether a boundary between phrase segments that may fall between ql1

and qr1 . Since the length of the buffer string of Bi is in the range [`/2, . . . , `] there is at most one
boundary between phrase segments that may fall between ql1 and qr1 . If there is such a boundary
let p + 2bi + a` be the location of this boundary. As p,a and ` are fixed this location depends only
on the value of bi. Since the value of bi is selected uniformly, the probability that p + 2bi + a · ` is
between ql1 and qr1 is at most 2(qr1 − ql1)/`. The above analysis is true for the first and last element
of every set Qi. Hence, again by the union bound,

ProbD [G | A] ≥ 1−
p∑

i=1

2(qri − qli)
`

. (5)

As we assume the event A the distance between consecutive queries is at most `/ log n. This
means that for any set Qi the distance between the first and the last queries is

qri − qli ≤
`|Qi|
log n

. (6)

Hence, combining (5) and (6) we have that:

ProbD [G | A] ≥ 1− 2
log n

p∑
i=1

|Qi|

= 1− 2d

log n
.

As d = o(log n/ log log n) we conclude that ProbD [G | A] = 1− o(1).

Proof of Theorem 3: As we have mentioned before, it is enough to prove a lower bound for
deterministic non-adaptive testers via Yao’s minimax principle. Let Alg be any deterministic non-
adaptive 1

24 -tester for Ln whose query complexity is o(log n/ log log n). Consider the distribution D
which generates an element from DP with probability 1/2 and an element from DN with probability
1/2. By Claim 4.2 we know that this distribution generates inputs that are either in Ln or are 1

24 -far
from belonging to this language.

According to the definition of D the choice whether the string generated is a positive instance or
a negative instance does not depend on the selection of the parameters s,b1, . . . , br and vice versa.
Consequently, we can and actually do view the process of generating a string by D as being done by
two consecutive stages: In the first stage the parameters s,b1, . . . , br are selected; In the second stage
it is first determined whether the phrases selected are from BAD` of from GOOD` (e.g., whether the
instance generated is a positive instance of a negative instance) afterwards the individual phrases
are selected and the generated string is constructed.

15

Let Q = {q1, . . . , qd}, where q1 < q2 < . . . < qd, be the set of queries used by Alg. As Alg is
deterministic and non-adaptive we may assume that the set Q is fixed in advance. Recall that G is
the event that given Q the integers ` and b1, . . . , br are such that for every 1 ≤ i < j ≤ d, if qi and qj

are in the same phrase of α then they are also in the same phrase segment. To conclude the claim
we show that if the values of ` and b1, . . . , br determined in the first stage of D satisfy G then the
distribution of the answers to Q is exactly the same if in the second stage of D either GOOD` is
selected or BAD` is selected. This is sufficient, since in this case Alg errs with probability exactly
1/2 (the probability of selecting BAD`). As by Claim 4.4 the values of ` and b1, . . . , br determined
in the first stage of D satisfy G with probability 1−o(1) we get that overall Alg errs with probability
1/2− o(1).

From here on we assume that the values of s, which determines `, and the bi’s selected by D are
all fixed and satisfy G. This implies that the length of every string used by D is now fixed and only
the choice of the specific phrase strings has not been determined. Thus, the answers to every query
that is not in one of the phrase segments {2, 3, 6, 7, 10, 11} of some phrase string is fixed. Therefore,
we assume that each query in Q is in one of the phrase segments {2, 3, 6, 7, 10, 11} of some phrase
string.

Let Q be the family of all maximal subsets Q′ of Q, such that all queries in Q′ are in the same
phrase string. We construct a subset Q′′ of Q by selecting one arbitrary query from each set in Q.
Let Q′ be a set in Q. As G is satisfied all the queries in Q′ are in the same phrase segment. Hence,
the answer to all the queries in Q′ is the same for any choice of phrase string. This implies that if
the distribution of the answers to Q′′ is exactly the same when GOOD` is selected and when BAD`

is selected, then the same is true for Q. As each query in Q′′ is in a different phrase string and the
phrase strings are selected independently, the answer to each of the queries in Q′′ is independent of
all the other answers. Since each query in Q′′ is in one of the phrase segments {2, 3, 6, 7, 10, 11}, the
answers to each query in Q′′ is 0 or 1 with probability 1/2. Thus, the distribution of answers to Q′′

is the uniform distribution when GOOD` is selected and when BAD` is selected.

5 Concluding Remarks and Open Problems

Our main result in this paper gives a relation between the space complexity and the query complexity
of a language, showing that the later may be exponential in the former. We also raise the conjecture
that this relation is tight, namely that the query complexity of a language is at most exponential
in its space complexity. The results of this paper further show that the family of easily testable
languages cannot be extended beyond that of the regular languages in terms of two natural senses;
the space complexity of the accepting machine or a minimal natural computational model in which
it can be recognized.

An intriguing related question is to understand the testability of languages with sublinear number
of queries. In particular, an intriguing open problem is whether all the context free languages can
be tested with a sublinear number of queries. Currently, the lower bounds for testing context-free
languages are of type Ω(nα) for some 0 < α < 1, see [15]. It seems that as an intermediate step
towards understanding the testability of context-free languages, it will be interesting to investigate
whether all the languages acceptable by single-counter automata can be tested with o(n) queries. We
note that the language we constructed in order to prove Theorem 3 can be tested with poly(log n, ε)
queries. As the proof is rather involved we refer the interested reader to [11].

16

Acknowledgments: The authors would like to thank Noga Alon, Madhu Sudan and Eli Ben-
Sasson for helpful discussions, and Oded Goldreich for his useful comments regarding the presentation
of our results.

References

[1] N. Alon, M. Krivelevich, I. Newman and M. Szegedy, Regular languages are testable with a
constant number of queries, Proc. 40th FOCS, New York, NY, IEEE (1999), 645–655. Also:
SIAM J. on Computing 30 (2001), 1842-1862.

[2] N. Alon and A. Shapira, A characterization of the (natural) graph properties testable with
one-sided error, Proc. of FOCS 2005, 429-438.

[3] N. Alon, E, Fischer, I. Newman and A. Shapira, A combinatorial characterization of the testable
graph properties: it’s all about regularity, Proc. of STOC 2006, 251-260.

[4] E. Ben-Sasson, P. Harsha and S. Raskhodnikova, Some 3-CNF properties are hard to test, Proc.
of STOC 2003, 345-354.

[5] M. Blum, M. Luby and R. Rubinfeld, Self-testing/correcting with applications to numerical
problems, JCSS 47 (1993), 549-595.

[6] E. Fischer, The art of uninformed decisions: A primer to property testing, The Computational
Complexity Column of The Bulletin of the European Association for Theoretical Computer
Science 75 (2001), 97-126.

[7] E. Fischer, I. Newman and J. Sgall, Functions that have read-twice constant width branching
programs are not necessarily testable, Random Structures and Algorithms, 24 (2004), 175-193.

[8] O. Goldreich, Combinatorial property testing - a survey, In: Randomization Methods in Algo-
rithm Design (P. Pardalos, S. Rajasekaran and J. Rolim eds.), AMS-DIMACS (1998), 45-60.

[9] O. Goldreich, S. Goldwasser and D. Ron, Property testing and its connection to learning and
approximation, Proc. of 37th Annual IEEE FOCS, (1996), 339–348. Also: JACM 45(4): 653-750
(1998).

[10] J. Justesen, A class of constructive asymptotically good algebraic codes, IEEE Transcations on
Information, 18:652-656, 1972.

[11] O. Lachish and I. Newman, Languages that are Recognized by Simple Counter Automata are
not necessarily Testable, ECCC report TR05-152.

[12] F. MacWilliams and N. Sloane, The Theory of Error-Correcting Codes, North-Holland,
Amsterdam, 1997.

[13] I. Newman, Testing of functions that have small width branching programs, Proc. of 41th FOCS
(2000), 251-258.

[14] C. Papadimitriou, Computational Complexity, Addison Wesley, 1994.

17

[15] M. Parnas, D. Ron and R. Rubinfeld, Testing membership in parenthesis languages, Random
Structures and Algorithms, 22 (2002), 98-138.

[16] D. Ron, Property testing, in: P. M. Pardalos, S. Rajasekaran, J. Reif and J. D. P. Rolim, editors,
Handbook of Randomized Computing, Vol. II, Kluwer Academic Publishers, 2001, 597–649.

[17] R. Rubinfeld, Sublinear time algorithms, Proc. of ICM 2006, to appear.

[18] R. Rubinfeld and M. Sudan, Robust characterization of polynomials with applications to pro-
gram testing, SIAM J. on Computing 25 (1996), 252–271.

[19] M. Sudan, Lecture Notes on Algorithmic Introduction to Coding Theory, available at
http://theory.lcs.mit.edu/∼madhu/FT01/scribe/lect6.ps.

[20] L.G. Valiant, M. Paterson, Deterministic one-counter automata, Journal of Computer and Sys-
tem Sciences, 10 (1975), 340–350.

18

