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Abstract. A string α ∈ Σn is called p-periodic, if for every i, j ∈
{1, . . . , n}, such that i ≡ j mod p, αi = αj , where αi is the i-th place of
α. A string α ∈ Σn is said to be period(≤ g), if there exists p ∈ {1, . . . , g}
such that α is p-periodic.
An ε property tester for period(≤ g) is a randomized algorithm, that for
an input α distinguishes between the case that α is in period(≤ g) and the
case that one needs to change at least ε-fraction of the letters of α, so that
it will become period(≤ g). The complexity of the tester is the number
of letter-queries it makes to the input. We study here the complexity
of ε testers for period(≤ g) when g varies in the range 1, . . . , n

2
. We

show that there exists a surprising exponential phase transition in the
query complexity around g = log n. That is, for every δ > 0 and for
each g, such that g ≥ (log n)1+δ, the number of queries required and
sufficient for testing period(≤ g) is polynomial in g. On the other hand,
for each g ≤ logn

4
, the number of queries required and sufficient for testing

period(≤ g) is only poly-logarithmic in g.
We also prove an exact asymptotic bound for testing general period-
icity. Namely, that 1-sided error, non adaptive ε-testing of periodicity
(period(≤ n

2
)) is Θ(

√
n log n) queries.

1 Introduction

Periodicity in strings plays an important role in several branches of CS and
engineering applications. It is being used as a measure of ’self similarity’ in
many application regarding string algorithms (e.g. pattern matching), compu-
tational biology, data analysis and planning (e.g. analysis of stock prices, com-
munication patterns etc.), signal and image processing and others. On the other
hand, sources of very large streams of data are now common inputs for strategy-
planning or trend detection algorithms. Typically, such streams of data are either
too large to store entirely in the computer memory, or so large that even lin-
ear processing time is not feasible. Thus it would be of interest to develop very
fast (sub-linear time) algorithms that test whether a long sequence is periodic
or approximately periodic, and in particular, that test if it has a very short
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period. This calls for algorithms in the framework of Combinatorial Property
Testing [1]. In this framework, introduced initially by Rubinfeld and Sudan [2]
and formalized by Goldreich et al. [1], one uses a randomized algorithm that
queries the input at very few locations and based on this, decides whether it has
a given property or it is ’far’ from having the property. Indeed related questions
to periodicity have already been investigated [3–5], although the focus here is
somewhat different.

In [6], the authors constructs an algorithm that approximates in a certain
sense the DFT (Discrete Fourier Transform) of a finite sequence in sub linear
time. This is quite related but not equivalent to testing how close is a sequence
to being periodic. In [3], the authors study some alternative parametric defini-
tions of periodicity that intend to ’capture the distance’ of a sequence to being
periodic. They mainly relate the different definitions of periodicity. They also
show that there is a tolerant tester for periodicity. That is, they show a simple
algorithm, that given 0 ≤ ε1 < ε2 ≤ 1, decides whether a sequence is ε1-close to
periodic or ε2-far from being periodic, using O(

√
n · poly(log n)) queries.

There are other works on sequences sketching [4] etc. but none of those seems
to address directly periodicity testing.

The property of being periodic is formalized here in a very general form: Let
Σ be a finite alphabet. A string α ∈ Σn is said to be p-periodic for an integer
p ∈ [n], if for every i, j ∈ [n], i ≡ j(modp), αi = αj , where αi is the i-th
character of α. We say that α is in period(≤ g), where g ∈ [n

2 ], if it is p-periodic
for some p ≤ g. We say that a string is periodic if it is in period(≤ n

2 ).
We study here the complexity of ε testing the property period(≤ g) when

g varies in the range 1, . . . , n
2 . An ε-tester for period(≤ g) is a randomized al-

gorithm, that for an input α ∈ Σn distinguishes between the case that α is in
period(≤ g) and the case that one needs to change at least an ε-fraction of the
letters of α, so that it will be in period(≤ g). The complexity of the tester is the
number of letter-queries it makes to the input.

We show that there exists a surprising exponential phase transition in the
complexity of testing period(≤ g) around g = log n. That is, for every δ > 0
and for each g, such that g ≥ (log n)1+δ, the number of queries required and
sufficient for testing period(≤ g) is polynomial in g. On the other hand, for each
g ≤ logn

4 , the number of queries required and sufficient for testing period(≤ g) is
only poly-logarithmic in g. We also settle the exact complexity of non-adaptive
1-sided error test for general periodicity (that is, period(≤ n/2)). We show that
the exact complexity in this case is θ(

√
n log n). The upper bound that we prove

is an improvement over the result of [3] and uses a construction of a small random
set A ⊆ [n] of size

√
n log n for which the multi-set A − A = {a − b|a, b ∈ A}

contains at least log n copies of each member of [n/2]. This can be trivially done
with a set A of size

√
n log n. We improve on the previous bound by giving

up the full independence of the samples, but still retain the property that the
probability of the log n copies of each number in A−A behave as if being not too
far from independent. A similar problem has occurred in various other situation,
(e.g. [7, 8]) and thus could be interesting in its own.
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The rest of the paper is organized as follows. In section 2 we introduce the
necessary notations and some very basic observations. Section 3 contains an
ε-test for period(≤ g) that uses θ(

√
g log g) queries. In section 4 we construct

an ε-test for period(≤ g), g ≤ log n
4 that uses only Õ((log g)6) queries. Sec-

tions 5 and 6 contain the corresponding lower bounds, thus showing the claimed
phase transition. Finally, the special case of g = θ(n) is treated in Section 7
which contains a proof that any 1-sided error non adaptive tester for periodic-
ity (period(≤ n

2 )) requires Ω(
√

n log n) queries. This implies that the tester in
section 3 is asymptotically optimal when g = n/2.

2 Preliminaries

In the following Σ is a fixed size alphabet. For a string α ∈ Σn and an integer i ∈
[n], ([n] = {1, . . . , n}) we denote by αi the i-th symbol of α, that is α = α1 . . . αn.
Given a set S ⊆ [n] such that S = {i1, i2, . . . , im} and i1 < i2 < . . . < im we
define αS = αi1αi2 . . . αim . In the following Σ will be fixed. Also, unless otherwise
stated, all strings are in Σn.

For two strings α, β we denote by dist(α, β) the Hamming distance between
α and β. Namely, dist(α, β) = |{i| αi 6= βi}|. For a property P ⊆ Σn and a
string α ∈ Σn, dist(α, P) = min{dist(α, β)| β ∈ P} denotes the distance from
α to P. We say that α is ε-far from P if dist(α,P) ≥ εn, otherwise we say that
α is ε-close to P.

Definition 1. For a string α and a subset S ⊆ [n] we say that αS is homoge-
neous if for all i, j ∈ S, αi = αj.

Property Testing
The type of algorithms that we consider here are ’property-testers’ [1, 9,

10]. An ε-test is a randomized algorithms that accesses the input string via a
‘location-oracle’ which it can query: A query is done by specifying one place in
the string to which the answer is the value of the string in the queried location.
The complexity of the algorithm is the amount of queries it makes in the worst
case. Such an algorithm is said to be an ε-test for a property P ⊆ Σn if it
distinguishes with success probability at least 2/3 between the case that the
input string belongs to P and the case that it is ε-far from P.
Periodicity

Definition 2. A string α ∈ Σn has period p (denoted p-periodic), if αi = αj

for every i, j ∈ [n], such that i ≡ j mod p.

Note that a string is homogeneous if and only if it is 1-periodic.

Definition 3. A string has the property period(≤ g) if it is p-periodic for some
p ≤ g. We say that it is periodic if it has the property period(≤ n

2 ).

Definition 4. A witness that a string α is not p-periodic, denoted as p-witness,
is an unordered pair {i, j} ⊆ [n], such that i ≡ j(mod p) and αi 6= αj.
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According to the definition of periodicity a string has a period p ≤ n
2 if and only

if there does not exist a p-witness.
In the same manner a witness for not having period(≤ g) is defined as follows:

Definition 5. A witness that a string is not in period(≤ g) is a set of integers
Q ⊆ [n] such that for every p ≤ g there are two integers i, j ∈ Q that form a
p-witness.

Fact 1. A string has period(≤ g), if and only if there does not exist a witness
that the string is not in period(≤ g).

Fact 2. If a string α ∈ Σn does not have a period in ( g
2 , g], where g ≤ n

2 , then
it has no period of at most g

2 . If a string α ∈ Σn is ε-far from having a period
in ( g

2 , g], where g ≤ n
2 , then it is ε-far from having the property period(≤ g).

Proof. Observe that if a string α ∈ Σn has period p ≤ g
2 , then it also has

period q for every q that is a multiple of p. Note also that there must exist such
q ∈ ( g

2 , g]. ut

Definition 6. For α ∈ Σn, p ∈ [n] and 0 ≤ i ≤ p − 1, let Z(p, i) = {j| j ≡
i(mod p)}. We call αZ(p,i) the i-th p-section of α.

The following obvious fact relates the distance of a string to p-periodic and
the homogeneity of its p-sections.

Fact 3. For each α, dist(α, p− periodic) = Σp−1
i=0 dist(αZ(p,i), homogeneous).

In further sections we use the following basic ε-test for p-period.

Algorithm p-test
Input: a string α ∈ Σn, the string length n, a period p ∈ [n

2 ] and a
distance parameter 0 < ε < 1;

1. Select 1
ε random unordered pairs (with repetitions) {i, j} ⊂ [n] such that

i ≡ j(modp).
2. Reject if one of the selected pairs is a p-witness (namely a witness for being

non-p-periodic). Otherwise accept.

Proposition 1. Algorithm p-test is a 1-sided error, non-adaptive ε-test for p-
periodic. Its query complexity is 2

ε .

Proof. The query complexity is obvious. The test is 1-sided error since it rejects
only if it finds a p-witness. To estimate its error probability let α be such that
dist(α, p− periodic) ≥ εn.

Assume that p divides n (the general case is essentially the same). With this
assumption |Z(p, i)| = n/p = m. For every 0 ≤ i ≤ p− 1 set
dist(αZ(p,i), homogeneous) = di. For fixed i and every σ ∈ Σ let nσ be the
number of occurrences of σ in Z(p, i). Assume also that we have renumbered the
letters in Σ so that n1 ≥ n2, . . . ≥ nk. Then di = n− n1 as it is easy to see that
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the closest homogeneous string is obtained by changing all letters different from
σ1 to σ1 (exactly m − n1 letters). Hence the number of p-witnesses in Z(p, i),
Wi, is Wi = 1

2 (Σnj)2−Σn2
j . It is easy to see that Wi ≥ m ·di/2. Now, according

to Fact 3 we get that, dist(α, p− periodic) =
Σp−1

i=0 dist(αZ(p,i), homogeneous) = Σp−1
i=0 di ≤ 2

mΣWi ≤ 2
mW where W is the

total number of p-witnesses.
It follows that W ≥ m

2 dist(α, p − periodic) ≥ εn2

2p . Note however that the

total number of unordered pairs i, j such that j ≡ i(mod p) is n2

2p . Thus we
conclude that the probability that a random such pair is a p-witness is at least
ε and the result follows. ut

We will need the following proposition in a number of lower bound proofs. Let
m < n/8, S ⊂ [n], |S| = m and a be an assignment a : S −→ {0, 1}. We define
the following distribution U/S on strings of length n. We choose every letter
αi = a(i) if i ∈ S. For all places i /∈ S we choose αi to be ‘1’ with probability
1/2 and ‘0’ with probability 1/2, independently between different i’s. Note that
U/S is just the uniform distribution on all binary strings conditioned on the
event that the projection on S is a. We have,

Proposition 2. Let m,S, a be as above and let G(g) be the event that a string
selected according to U/S is 1

16 -far from having period(≤ g). Then ProbU/S(G(g))
≥ 1− 1

n .

Proof: Let U be the uniform distribution over Σn. Note that if a string is
1
16 -far from having period(≤ n

2 ) then for every g ≤ n
2 the string 1

16 -far from
having period(≤ g). Hence it is sufficient to prove the proposition only in the
case that g = n

2 . According to Fact 2, it is enough to prove that the probability
that a string selected according to U/S is 1

16 -far from having a period in
(

n
4 , n

2

]
,

is at least 1 − 1
n . We prove that for each p ∈

(
n
4 , n

2

]
the probability that a

string selected according to U , is 1
16 -close to being p-periodic, is at most 4

n2 , and
therefore by the union bound we are done.

Indeed let p ∈
(

n
4 , n

2

]
, and let α be a string selected according to U/S. Since

p ∈
(

n
4 , n

2

]
there are at least n

4 p-sections. Because m ≤ n
8 and the size of each

p-section is at least 2, at least 3n
16 of these p-sections contain at least 1 location

not in S. We call such a location a free location, and define B to be the set of
all integers x such that the x p-section contains a free location.

Then for every i ∈ B, ProbU/S(dist(αZ(p,i), homogeneous) ≥ 1) ≥ 1
2 (the

free location is different than some other location in the p-sections). Thus, since
the p-sections are mutually disjoint and |B| ≥ 3n

16 , Chernoff bound implies that,
ProbU/S

(∑
i∈B dist(αZ(p,i), homogeneous) ≤ n

16

)
≤ e−

n
24 ≤ 4

n2 . ut

3 Upper Bound for Testing period(≤ g)

In this section we construct a 1-sided error, non adaptive ε-test for period(≤ g)
that uses O(

√
g log g/ε2) queries. The construction consists of two stages. We
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first show a 1-sided error, non adaptive algorithm, PT , for testing periodicity

(period(≤ n
2 )), that uses O(

√
n log n

ε2 ) queries. Then we show how to use algorithm
PT in order to construct the claimed algorithm for testing period(≤ g).

The intuition behind the algorithm PT is simple. We first explain it by
hinting to a test for period(≤ n

2 ) that uses O(
√

n log n
ε2 ) queries. By Fact 2 α is

ε-far from period(≤ n) if and only if α is ε-far from being p-periodic for every
p ∈ (n

4 , n
2 ]. We show that if α is ε-far from period(≤ n

2 ), we can find a p-witness
for each p ∈ (n

4 , n
2 ] with probability at least 1

n . This is sufficient since by the
union bound we will be done.

Suppose that we can construct a random set Q ⊆ [n] of size O(
√

n log n), such
that Q contains at least log n potential p-witnesses for each p ∈ (n

4 , n
2 ]. Then

obviously we achieve the above goal. Indeed such a set Q can be constructed e.g.
by choosing Q uniformly between all sets of the required cardinality.

To reduce the size of Q, we construct such a random set Q of size
√

n log n
with the above properties while giving up the independence between the log n
pairs for each p. In turn we will have to show that the probability that none will
be a p-witness is still low enough.

We use the following definition in the ε-test for g = n
2 (periodicity).

Definition 7. Let ` =
√

n log n and let J = {Ii}`
i=1 be the set of pairwise

disjoint intervals Ii =
(
(i− 1)

√
n

log n , i
√

n
log n

]
.

We now present the ε-test for period(≤ n
2 ).

Algorithm PT
Input: a string α ∈ Σn, the string length n and a distance parameter
0 < ε < 1;
Let `, J be as in Definition 7.

1. Select a set of integers T = {t1, . . . , t`} by choosing one random point from
each I ∈ J .

2. Repeat the following independently for m = 210·log n
ε2 times: uniformly select

an interval I ∈ J . Let J∗ be the set of intervals that where selected and let
H = ∪I∈J∗I.

3. Reject if for every p ∈ (n
4 , n

2 ] the set H ∪ T contains a p-witness. Otherwise
accept.

Theorem 1. Algorithm PT is a 1-sided error, non-adaptive ε-test for period-
icity. Its query complexity is O(

√
n log n/ε2).

The proof is in omitted.

Theorem 2. For any g ≤ n
2 there is a 1-sided error, non-adaptive ε-test for

period(≤ g). Its query complexity is O(
√

g log g/ε2).

Proof (idea): Let α ∈ Σn. We think of α as being composed of n
2g pieces of

length n′ = 2g each. We now run the ε-test for periodicity for strings of length n′

and for each query q ∈ [n′] we query q in one the pieces that is chosen randomly
and independently for each query. We avoid further details here. ut
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4 Upper Bound for Testing period(≤ g), where g ≤ log n
4

Let g ≤ log n
4 , we describe an algorithm for testing whether a string has

period(≤ g) that has query complexity poly(log g). The technicalities are some-
what involved, however, the intuition is simple and motivated by the following
reasoning: Our goal is to find a witness for not being r-periodic for every r ∈ [g].
One thing that we could do easily is to check whether α is q-periodic where q
is the product of all numbers in [g] (this number would be a actually too big,
but for understanding the following intuition this should suffice). Now if α is not
q-periodic then it is certainly not in period(≤ g) and we are done. Yet as far as
we know α may be far from having period(≤ g) but is q-periodic. Our goal is to
show that if α is far from p-periodic, where p ≤ g, then there exists q′ >> g, such
that, α is far from q’-periodic and p divides q′. Indeed it follows form Lemma 3
that if α is far form p then there exists such a q′ as above. This together with
the following concept enables us to construct an ε-test.

Definition 8. For integers n,g ∈ [n], a gcd-cover of [g] is a set E ⊆ [n] such
that for every ` ≤ g, there exists a subset I ⊆ E, that satisfies ` = gcd(I).

The importance of a gcd-cover of [g] is the following: We prove that if ` =
gcd(I) for an integer ` and a subset I, then, the assumption that α is far from
being `-periodic implies that it is also sufficiently far from being t-periodic for
some t ∈ I. Using this, let E be a gcd-cover of [g]. Then we are going to query
for each t ∈ E enough pairs i, j ∈ [n] such that i ≡ j(mod t). We say that such
pairs i, j cover t. Now for each ` ≤ g there is a set I` ⊆ E such that ` = gcd(I`).
The pairs of queries that cover I` cover `. Thus if α is ‘far’ from being `-periodic
then, as gcd(I`) = `, there exists a period t, t ∈ I`, such that the string is far
from t-periodic. We thus expect that this t will distinguish between strings that
are `-periodic and those that are k`-periodic but far from being `-periodic.

As the complexity of the test will depend crucially on the size of the gcd-
cover, we need to guarantee the existence of a small one. This is done in the
following Lemma, which also brings in an additional technical requirement.

Lemma 1. For every integers n and g ∈
[

log n
4

]
, there exists a gcd-cover of [g],

E ⊆ [
√

n], of size O((log g)3).

The proof of Lemma 1 is omitted.
A gcd-cover of [g] as in the Lemma is called an efficient gcd-cover of [g].
We next describe our algorithm.

Algorithm SPT
Input: a string α ∈ Σn, a distance parameter 0 < ε < 1 and a threshold
period g ≤ log n

4 ;

1. Set E to be an efficient gcd-cover of [g].
2. Let M = |E|·log(8|E|)

2ε . For each ` ∈ E select M pairs of integers uniformly
and with repetitions from the set {{x, y} | x ≡ y mod ` and x, y ∈ [n]}. Let
Q be the resulting (multi)set.
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3. Reject if for each ` ∈ [g] the set Q contains a witness that α is not `-periodic.
Otherwise accept.

Theorem 3. Algorithm SPT is a 1-sided error, non-adaptive ε-test for
period(≤ g), where g ≤ log n

4 . Its query complexity is Õ
(

(log g)6

ε

)
.

Proof: Since for every member of E we used M queries and |E| = O((log g)3)
the estimate on the query complexity follows. The fact that the algorithm never
rejects a `-periodic string, for ` ≤ g is immediate, as the algorithm rejects only
when it finds a witness that the input string is not in period(≤ g).

In order to compute the success probability of algorithm SPT we first need
the following definition.

Definition 9. A string α ∈ Σn is called ε-bad if for every ` ≤ g and every
S ⊆ E, where ` = gcd(S), there exists s ∈ S for which α is ε

2|E| -far from being
s-periodic.

Note: if α is ε-bad and s, ` as in the definition, then a witness for it showing
that it is not s-periodic is also a witness that it is not `-periodic.

The proof of the Theorem now follows from Lemma 2 and Lemma 3. ut

Lemma 2. Algorithm SPT rejects every α that is ε-bad with probability at least
3
4 .

Proof. Let α ∈ Σn be ε-bad. Let B ⊆ E be the set that contains every b ∈ E
such that α is ε

2|E| -far from being b-periodic. By Definition 9, for every ` ≤ g

there exists a b ∈ B such that ` | b, and hence if we find a b-witness for each
b ∈ B - this is also a witness that α is not in period(≤ g). Thus, it is enough to
prove that for each b ∈ B, the probability that there is no b-witness in Q is at
most 1

8|E| , as then by the union bound we are done.
Let δ = ε

2|E| and let b be a member of B, namely α is δ-far from being
b-periodic. By Corollary 1, for a random x, y ∈ [n], such that x ≡ y mod b we
have that Prob(αx 6= αy) ≥ δ. Since M random pairs are being queried for each
` ∈ E and in particular for b, the probability that a b-witness is not found is at
most (1− δ)M ≤ 1

(8|E|) . ut

Lemma 3. If a string α ∈ Σn is ε-far from having short period(≤ g), where
g ≤ (log n)/4 then it is a ε-bad string.

The proof of Lemma 3 is omitted.

5 Lower Bound for Testing period(≤ g)

In this section we prove that every g ≤ n/2 every adaptive, 2-sided error,
1
32 -test for period(≤ g) uses Ω(

√
g/(log g · log n)) queries. We prove this for

Σ = {0, 1}. This implies the same bound for every alphabet that contains at
least two symbols.
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Theorem 4. Any adaptive 2-sided, error 1
32 -test for period(≤ g), uses

Ω(
√

g/(log g · log n)) queries.

Proof. Fix g ≤ n/2. We prove the theorem by using Yao’s principle. That is,
we construct a distribution D over legitimate instances (strings that are either
in period(≤ g), or strings that are 1

32 -far from period(≤ g)) and prove that any
adaptive deterministic tester, that uses m = o(

√
g/(log g · log n)) queries, gives

an incorrect answer with probability greater than 1
3 .

In order to define D we use auxiliary distributions DP ,DN and the following
notation. Let Primes = {p | p is a prime such that p ≤ g}. According to the
Prime Number Theorem [11–13], |Primes| = θ( g

log g ).
We now define distributions DP ,DN .

– DN is simply the uniform distribution over Σn.
– An instance α of length n is selected according to distribution DP as follows.

Uniformly select p ∈ Primes, then uniformly select ω ∈ Σp and finally set
α = (ω)

n
p .

We next define distribution D. Let G be the event that α is 1
16 -far from having

period(≤ g). Let DN/G be the distribution DN given that event G is true. A
string α is selected according to distribution D by choosing one of the distrib-
utions DP ,DN/G with equal probability and then selecting α according to the
distribution chosen. Namely D = 1

2DP + 1
2DN/G .

We don’t work directly with D but rather with a simpler distribution D′

which approximates D well enough and is defined as follows D′ = 1
2DP + 1

2DN .
Let B be the event that the tester gives an incorrect answer. We prove that
ProbD′(B) ≥ 2

5 . This is indeed sufficient as ProbD(B) ≥ ProbD′(B)−ProbDN
(G).

Using Proposition 2, ProbD(B) ≥ 1−o(1)
2 − 1

g > 1
3 .

We assume with out loss of generality that for any string of length n the
tester uses the same number of queries. Hence we can view the tester as a full
binary decision tree of depth m which is labeled as follows. Each node of the tree
represents a query location, for each internal node one of the outgoing edges is
labeled by 1 and the other by 0, where 0, 1 represent the answers to the query,
and each leaf is labeled either by “accept” or by “reject” according to the decision
of the algorithm.

For each leaf l in the tree we associate a pair Ql, fl, where Ql is the set of
queries on the path from the root to the leaf l and fl : Ql −→ {0, 1} is a mapping
between each query and its answer, that is the labellings on the edges of the path
from the root to the leaf l. Let L be the set of all leaves, L0 be the set of all
leaves that are labeled by “reject” and let L1 be the set of all leaves that are
labeled by “accept”.

Let h` : Σn −→ {0, 1} be a function that is 1 only on strings α ∈ Σn such
that for every q ∈ Q` we have αq = f`(q). That is h`(α) = 1 if and only if α is
consistent with Q`, f`. Let far : Σn −→ {0, 1} be a function that is 1 only on
strings α ∈ Σn such that are 1

16 -far from period(≤ g)). Thus the ProbD′(B) is
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at least
1
2
Σ`∈L0probDP

[h`(α) = 1] +
1
2
Σ`∈L1probDN

[far(α) = 1
∧

h`(α) = 1] (1)

We will prove that for each ` ∈ L0, probDP
[h`(α) = 1] ≥ 1−o(1)

2m , and for each ` ∈
L1, probDN

[far(α) = 1
∧

h`(α) = 1] ≥ 1−o(1)
·2m . This implies that ProbD′(B) ≥

1
2Σ`∈L

1−o(1)
·2m ≥ 1−o(1)

2 .
Indeed, recall that a string is selected according to DP by first selecting

z ∈ Primes and then selecting a z-periodic string. For Q ⊂ [n], |Q| = m let
A(Q) be the event that for α selected according to DP , there exists no j, k ∈ Q
such that j ≡ k mod z. For any fixed i < j ∈ Q there are at most log n prime
divisors of j− i. Hence for each ` ∈ L0, probDP

[A(Q`)] ≥ 1− m2·log n
|Primes| ≥ 1−o(1).

Observe that for any fixed ` if A(Q`) occurs then according to the definition of
DP , for each q ∈ Ql, αq is selected uniformly and independently of any other
q′. Hence, probDP

[h`(α) = 1] ≥ probDP
[h`(α) = 1 ∧ A(Q`)] ≥ probDP

[h`(α) =
1 | A(Q`)] · ProbDP

[A(Q`)] ≥ 1
2m (1− o(1)).

Observe that for each ` ∈ L1,

ProbDN
[far(α) = 1

∧
h`(α) = 1] ≥

ProbDN
[far(α) = 1 | h`(α) = 1] · ProbDN

[h`(α) = 1] . (2)

By the definition of DN , ProbDN
[h`(α) = 1] = 1

2m . Also, using the definition
just before Proposition 2 we see that ProbDN

[far(α) = 1 | h`(α) = 1] =
probU(Q`)[far(α) = 1] ≥ 1 − 1

n (where the last inequality is by Proposition
2). ut

6 Lower Bound for Testing period(≤ g), where g ≤ log n
4

In this section we prove that every 2-sided error, 1
16 -test for period(≤ g), where

g ≤ log n
4 , uses Ω((log g)

1
4 ) queries. We prove this for Σ = {0, 1}. This implies

the same bound for every alphabet that contains at least two symbols. This also
shows that the test presented in Section 4 cannot be dramatically improved.

Theorem 5. Any 2-sided error 1
16 -test for period(≤ g), where g ≤ log n

4 , re-
quires Ω((log g)

1
4 ) queries.

Proof. The proof is very similar to the proof of Theorem 4. We just describe
here the two probabilities DP and DN that are concentrated on positive inputs
(those that have period(≤ g)) and negative inputs (those that are 1

16 -far from
being period(≤ g)) respectively.

Let S = {p1, . . . , pk} where k = 1 +
√

log g and each pi is a prime such that
2
√

log g−0.9 ≤ pi ≤ 2
√

log g. According to the Prime Number Theorem [11–13]
there exists at least 1

8
√

log g
· 2
√

log g > 2 +
√

log g such primes, hence the set S

is well defined. Let t =
∏

p∈S p and let Z = { t
p | p ∈ S}. Note that t > g while

z ≤ g for every z ∈ Z.
We now define distributions DP , DN (we assume w.l.o.g that t divides n).
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– We use an auxiliary distribution U in order to define DN . To select an
instance according to U , select a random string ω ∈ Σt and then set α =
(ω)

n
t . Let G be the event that α is 1

16 -far from being period(≤ g). Then DN
is defined as the distribution U|G, namely U given G.

– An instance α of length n is selected according to distribution DP as follows.
Uniformly a select z ∈ Z , select uniformly a string ω ∈ Σz and then set
α = (ω)

n
z .

We omit further details. ut

7 Lower Bound for Testing Periodicity

Let Σ = {0, 1}, we prove the following lower bound on the number of queries
that is needed for testing period(≤ n

2 ) over Σ. This clearly implies the same
lower bound for any alphabet that contains at least two letter. It also shows
that the test presented in Section 3 is asymptotically optimal.

Theorem 6. Any non-adaptive 1-sided error 1
16 -test for periodicity requires

Ω(
√

n log n) queries.

Proof: A 1-sided error test rejects only when the input string is not periodic.
Therefore according to corollary 1 such a test rejects only if the set of queries it
uses contains a witness that the string in not periodic. To prove the Theorem we
use Yao’s principle (the easy direction). Namely, we construct a distribution on
1/16-far inputs and show that any deterministic non-adaptive test that queries

at most
√

n log n

100 queries finds a witness for non-periodicity with probability at
most 1/3.

Let U be the uniform distribution over Σn, and let G be the event that
a string selected according to U is 1

16 -far from being periodic. Let D be the
distribution U/G (U given G). Namely, D is uniform over strings in Σn that
are 1/16-far from being periodic. Let B be the event that the set of queries Q
contains a witness. Proposition 2 ProbU (G) ≥ 1− 1

n . Thus, it is enough to prove
that probU (B) < 1

4 , since probD(B) ≤ ProbU (B)+ProbU (G) ≤ 1
4 + 1

n . The proof
follows from Lemma 4 below. ut

Lemma 4. Let Q ⊆ [n] be a set of
√

n log n

100 queries. Then for α chosen according
to U , the probability that Q contains a witness that α is not periodic is at most
1
4 .

The proof is omitted.
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