
Increasing Kolmogorov Complexity

Harry Buhrman1,2, Lance Fortnow3,
Ilan Newman4, and Nikolai Vereshchagin5?

1 CWI, Amsterdam, the Netherlands.
buhrman@cwi.nl

2 ILLC, University of Amsterdam, the Netherlands.
3 Dept. of Computer Science, University of Chicago.

fortnow@cs.uchicago.edu
4 Dept. of Computer Science, Haifa University, Israel.

ilan@cs.haifa.ac.il
5 Moscow State University.

kolya@ver.mccme.ru

classification: Kolmogorov complexity, computational complexity

1 Introduction

How much do we have to change a string to increase its Kolmogorov complexity?
We show that we can increase the complexity of any non-random string of length
n by flipping O(

√
n) bits and some strings require Ω(

√
n) bit flips. For a given

m, we also give bounds for increasing the complexity of a string by flipping m
bits.

By using constructible expanding graphs we give an efficient algorithm that
given any non-random string of length n will give a small list of strings of the
same length, at least one of which will have higher Kolmogorov complexity.
As an application, we show that BPP is contained in P relative to the set of
Kolmogorov random strings. Allender, Buhrman, Koucký, van Melkbeek and
Ronneberger [2] building on our techniques later improved this result to show
that all of PSPACE reduces to P with an oracle for the random strings.

2 Increasing Complexity by Flipping Bits

Using the notation of Li and Vitányi, we use CU (x) to represent the size of the
smallest program p such that U(p) = x. We fix a universal reference computer
U and let C(x) = CU (x).

Assume we are given a binary string x. How much we can increase its com-
plexity by flipping at most m bits of x? Let Nm(x) denote the set of all strings
with Hamming distance at most m from x. Let Nm(A) stand for the union of
Nm(x) over x ∈ A.

We use the notation O(1), c, c1, . . . for constants depending on the reference
machine U and d, d1, . . . for absolute constants. The following, rather general
? The work was done while visiting CWI; also supported in part by the RFBR grant

02-01-22001.

theorem, asserting that the complexity of any ‘typical’ string in a set can be
increased by flipping m bits to the expected log |Nm(A)| is an immediate impli-
cation of the ‘cardinality’ lower bound for Kolmogorov complexity.

Theorem 1. Let k,m, a ≤ n be such that the following condition hold
(*) for every set A ⊆ {0, 1}n with |A| > 2a, Nm(A) ≥ 2k for k < n, or

Nm(A) ≥ 2n(1− 1/c2) for k = n.
Then, there are constants c1, c2 depending on the reference computer such

that for every string x of complexity at least C(x|n) ≥ a+2C(k, m|n, a)+c1 there
is a string y obtained from x by flipping at most m bits such that C(y|n) ≥ k.

Proof. Consider the following set

B = {x ∈ {0, 1}n | C(y|n) < k for all y ∈ Nm(x)}.

As the Kolmogorov complexity of all strings in Nm(B) is less than k we have
|Nm(B)| < 2k. In the case n = k we may upper bound |Nm(B)| better. Recall
the following lower bound for the number of random strings (for the proof see [5]):
for appropriate choice of c2 for every n the number of strings y of length n
with C(y|n) ≥ n is more than 2n/c2. Therefore in the case k = n we have
|Nm(B)| < 2n(1− 1/c2).

In both cases we thus obtain |B| ≤ 2a. The set B may be enumerated given
k,m, n. Therefore every string x ∈ B can be described by m,n, k and its index
in B of bit length a. Thus C(x|n) < a + 2C(k,m|n, a) + c1 for all x ∈ B, where
c1 is a constant depending on the reference computer. In other words, for every
x such that the last inequality is false there is y ∈ Nm(x) with C(y|n) ≥ k.

Theorem 1 is rather general and applies to any graph rather just the Boolean
cube, when we replace ‘flipping bits’ with going to neighbors. This will be dis-
cussed in Section 3.

We now want to apply Theorem 1. For this we need to analyze the expanding
properties of the Boolean cube. The complete analysis is given by the following
theorem. We first introduce a notation. Let b(n, l) denote the binomial sum:
b(n, l) =

(
n
0

)
+

(
n
1

)
+ · · ·+

(
n
l

)
.

Theorem 2 (Harper). Let J ≤ 2n. Take all the strings with less than l ones
and take the J − l first strings with l ones in lexicographical order, where l is
chosen so that b(n, l − 1) < J ≤ b(n, l). Then the resulting set has the least
|N1(A)| among all sets A with |A| = J − l.

We will use the following corollary of Harper’s theorem.

Corollary 1. If |Nm(A)| ≤ b(n, l) and l < n then |A| ≤ b(n, l − m) and
|Nm(A)|

|A| > (n−l
l)m.

We note that the second bound is very weak and becomes trivial for l > n/2.
It will be sufficient though for our applications.

Proof. It is enough to prove the theorem in the case m = 1. For m > 1 we can
use induction where inductive step is due to the case m = 1.

The first statement immediately follows from Harper’s theorem. Let us prove
the second one assuming that l ≤ n/2. Let J = |A|. It suffices to establish the
inequality assuming that A is the worst case set defined in the Harper’s theorem.
We have(

n

0

)
+

(
n

1

)
+ · · ·+

(
n

l′ − 1

)
< |A| = J ≤

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

l′

)
for some l′. We claim that l′ < l. Indeed, otherwise |A| > b(n, l−1) and therefore
A has a string with l ones, thus N(A) has a string with l+1 ones hence |N(A)| >
b(n, l), a contradiction. For the worst case set A we will prove that |∆(A)|/|A| ≥
(n− l′)/(l′ +1) ≥ (n− l +1)/l where ∆(A) stands for the set of strings obtained
from strings in A by changing a 0 to 1 (but not vice verse). (Actually ∆(A) and
N(A) differ by only one string, 00 . . . 0.)

Let B consist of all strings with less than l′ ones thus B ⊂ A. Obviously,
∆(A) and ∆(B−A) do not intersect, as every string in the first set has at most
l′ ones and every string in the second set has l′ + 1 ones. Therefore it suffices to
prove that |∆(B)|/|B| ≥ (n−l′)/(l′+1) and |∆(B−A)|/|B−A| ≥ (n−l′)/(l′+1).

The first inequality is proved as follows: ∆(B) is the set of all strings with
at most l′ ones except 00 . . . 0, so |∆(B)| =

(
n
1

)
+

(
n
2

)
+ · · · +

(
n
l′

)
. And |B| =(

n
0

)
+

(
n
1

)
+ · · ·+

(
n

l′−1

)
. The ratio of ith term the first sum and ith term in the

second sum is
(
n
i

)
/
(

n
i−1

)
= (n− i + 1)/i ≥ (n− l′ + 1)/l′ ≥ (n− l′)/(l′ + 1).

Let us prove the second inequality. Let x be a string with l′ ones and let
Cx denote the set of all strings with l′ ones that are less than or equal to x.
We claim |∆(Cx)|/|Cx| is a non-increasing function in x. To prove this claim it
suffices to show that |∆(Cx ∪ {x′}) − ∆(Cx)| is a non-increasing function in x
where x′ denotes the successor of x. The set ∆(Cx ∪ {x′}) − ∆(Cx) consists of
all strings obtained by flipping all zeros in x′ preceding the leading 1 (all other
flips result in strings that are already in ∆(Cx)). Hence ∆(Cx ∪ {x′}) −∆(Cx)
is equal to the number of zeros preceding the leading 1 in x′. And the latter
number does not increases as x′ increases.

For x equal to the last string with l′ ones we have that |∆(Cx)|/|Cx| =(
n

l′+1

)
/
(

n
l′

)
= (n− l′)/(l′ + 1) so we are done.

As a result we obtain the following triplets of k,m, a for which condition (*)
and hence Theorem 1 hold.

Theorem 3. There is a constant c3, such that for every k ≤ n, m and a string
x of complexity at least C(x|n) ≥ a+2C(m|n, a)+c3, there is a string y obtained
from x by flipping at most m bits such that C(y|n) ≥ k. Here a = k−bm log((n−
l)/l)c where l is the least number such that 2k ≤ b(n, l).

Proof. Let l be as above and let c1 be the constant from Theorem 1. We first
note that the conditions of Theorem 1 hold for a, k,m. Indeed, assume that
|Nm(A)| < 2k, then by the definition of l, |Nm(A)| <

(
n
0

)
+

(
n
1

)
+ · · ·+

(
n
l

)
and by

Corollary 1 we have |A| < |Nm(A)|((n− l)/l)−m < 2k((n− l)/l)−m ≤ 2a. Hence,
Theorem 1 asserts that for every string x with C(x|n) ≥ a + 2C(k,m|n, a) + c1

there is a string y obtained from x by flipping at most m bits such that C(y|n) ≥
k.

It suffices to prove that C(k,m|n, a) ≤ C(m|n, a) + O(1) ≤ log m + O(1).
To this end we will prove that k can be retrieved from m,n, a. By definition l
is a function of n, k and a is a function of n, k,m. The function l(n, k) is non-
decreasing in k hence the function a(n, k,m) = k − b(m + 1) log((n − l)/l)c is
also non-decreasing in k, as the sum of two non-decreasing functions. Moreover,
the first term increases by 1 as k increments by 1. This implies that k can be
retrieved from m,n, a hence C(k, m|n, a) ≤ C(m|n, a) + O(1).

For p ∈ (0, 1) let H(p) = −p log p−(1−p) log(1−p) be the Shannon Entropy
function. Note that for every α ∈ [0; 1) there are two different β1, β2 such that
h(β1) = h(β2) = α; they are related by the equality β1 + β2 = 1. Let H−1(α)
stand for the least of them. The function H−1(α) increases in the range (0, 0.5)
as so does H.

Theorem 4. For all α < 1 and i > 0 there is m(α, i) (depending also on the
reference computer) such that for all large enough n the following holds: For all
x of length n with C(x|n) ≤ αn there is y obtained from x by flipping at most
m(α, i) bits such that C(y|n) ≥ C(x|n) + i. For any fixed i there is a positive α
such that m(α, i) = 1.

Proof. Fix α and i and let x be such that C(x|n) ≤ αn and let k = C(x|n) + i.
Let l be the least number such that b(n, l) ≥ 2k. We first prove that l ≤ βn for
some constant β < 1/2, for large enough n. This means that b(n, βn) ≥ 2k for
some constant β < 1, for large enough n. Let β be any number in the interval
(H−1(α); 1/2) As α < 1, the interval is not empty. Then, b(n, βn) ≥

(
n

βn

)
≥

2nH(β)(1+o(1)) (where the last inequality is standard, see e.g. [7]). Plugging
in the definition of β can continue the inequality: b(n, βn) ≥ 2nH(β)(1+o(1)) ≥
2nα+i ≥ 2k for large enough n.

Define now a = k − bm log((n − l)/l)c. Applying Theorem 3, with a, k, l as
above, we get that for every x there is y obtained from x by flipping at most m
bits such that C(y|n) ≥ k, as needed, provided that

C(x|n) ≥ a + 2C(m|n, a) + c3. (1)

To show that (1) holds, note that C(m|n, a) ≤ log m. Plugging this, along
with the definition of a, k, in (1) we get that it is enough to show that C(x|n) ≥
C(x|n) + i− bm log((n− l)/l)c+ 2 log m + c3.

Using that l ≤ βn and the appropriate bound on β we get that it is enough
to have bm log((1 − β)/β)c > i + 2 log m + c3. Note that the definition of β
implies that β < 1/2 hence 1−β

β > 1. Therefore for large enough m we will have
bm log((1− β)/β)c > i + 2 log m + c3.

Finally, let m = 1. Note that log((1 − β)/β) tends to infinity as β tends to
0. Therefore for any fixed i there is a positive β such that bm log((1− β)/β)c >
i + 2 log m + c3. Let α be equal to any positive real such that H(α) < β.

Remark 1. We note that Theorem 4 works for fixed i, with respect to n, while
m depends on i and α for fixed α or could be fixed when α gets small enough.
One could ask whether it might be true that i could be a function of n, e.g,
could the following strengthening of Theorem 4 be true: For any α (or even for
some α) the complexity of a string x that is bounded by αn could be increased
to αn + i(n) by changing only one bit. It is obvious that we cannot expect such
a strengthening for i(n) > log n, as given x the complexity of any y that differs
form it in one place is at most C(x|n) + log n. Other lower bounds on m vs.
the amount of increase in complexity, and the relation to α are developed in
Theorem 6 and Theorem 7.

Let us estimate how many bits we need to flip to increase complexity from
k − 1 to k when k is close to n, say for k = n.

Theorem 5. For every x with C(x|n) < n by flipping at most c3
√

n bits of x
we can increase its complexity (by at least 1).

Proof. Assume first that C(x|n) ≤ n− 3. Let k = C(x|n) + 1 ≤ n− 2 and m =
c4
√

n for a constant c4 to be defined later. Apply Theorem 3. As 2k ≤ 2n/4 we
have l ≤ n/2−d2

√
n and (n−l)/l ≥ (n/2+d2

√
n)/(n/2−d2

√
n) ≥ 1+2d3/

√
n ≥

2d4/
√

n for large enough n. This implies that a ≤ k − c4d4. By Theorem 3 for
every x with C(x|n) ≥ k − c4d4 + 2C(m|a, n) + c3 there is y obtained from x
by flipping at most m bits with C(y|n) ≥ k. Obviously C(m|a, n) ≤ log c4 + c5.
Therefore if c4 is large enough we have k − c4d4 + 2C(m|a, n) + c1 ≤ k − 1 and
we are done.

Assume now that C(x|n) ≥ n− 2. Let us prove that by flipping O(
√

n) bits
we can increase the complexity of x up to n. This time we will apply Theorem 1
and Corollary 1 directly. For some c3 for l = n/2 + c3

√
n we have b(n, l) ≥

2n(1− 1/c2), where c2 is the constant from Theorem 1. Let m = c3
√

n + c4
√

n,
where c4 is chosen so that b(n, l −m) ≤ 2n−c5 , and c5 will be chosen later. Let
a = n−c5 and k = n. By Corollary 1 the conditions of Theorem 1 are fulfilled. As
a+2C(k,m|n)+c1 ≤ n−c5 +2 log c5 +c6 ≤ n−2 if c5 was chosen appropriately,
we are done.

Now we proceed to the lower bounds of the number of flipped bits. We will
show that for every m there is α such that the complexity of some strings of
complexity αn cannot be increased by flipping at most m bits. And there are
strings for which we need to flip Ω(

√
n) bits.

Theorem 6. For every m, k ≥ 1 there is a θ(k, m) < 1 such that for every
α > θ(k, m), for almost all n there is a string x of length n such that C(x|n) ≤ αn
and C(y|n) < C(x|n) + k for every string y obtained from x by flipping at most
m bits.

Proof. Let θ(k, m) = H(1/(1 + 2k/m)), and let θ(k, m) < α. As k > 0 we note
that 1/(1 + 2k/m) < 1/2. Hence θ(k, m) < 1. Without loss of generality assume
that α < 1.

Pick any β in the interval (1/(1+2k/m);H−1(α)). Again by the bound above,
and using the fact that H is monotone in the interval (0; 0.5), the interval for β
is non empty. Let l = βn + c2m for a constant c2 to be defined later.

We first prove that every string x having at most l ones satisfies the inequality
C(x|n) < αn, for large enough n. Indeed, the number of such strings is equal to
b(n, l) and hence is at most 2nH(l/n)(1+o(1)) [7] (as l < n/2). Therefore C(x|n) <
nH(β)(1 + o(1)) + O(1) < nα for large enough n, where the constant O(1)
depends on β, c2,m and the reference computer.

So we need to show that there is a string x having at most l ones and satisfying
the second statement of the theorem. Assume that this is not the case. Let then
x0 be a random string having at most βn ones, that is, C(x0|n) ≥ log(b(n, βn)).
If x0 satisfies the statement then we are done. Otherwise there is x1 having at
most βn + m ones such that C(x1|n) ≥ C(x0|n) + k. Repeating this argument
c2 times we either find a string satisfying the statement or obtain a string xc2

with C(xc2 |n) ≥ C(x0|n) + c2k having at most βn + c2m = l ones. Hence
C(xc2 |n) ≥ log(b(n, βn)) + c2k. On the other hand, C(xc2 |n) ≤ log(b(n, l)) +
2C(l|n) + c1 ≤ log(b(n, l)) + 2 log c2 + c3, where c3 depends on k, m, α and the
reference computer. To obtain the contradiction we have to show that the upper
bound of C(xc2 |n) is less than the lower bound. The ratio of

(
n
0

)
+

(
n
1

)
+ · · ·+

(
n
l

)
and

(
n
0

)
+

(
n
1

)
+ · · ·+

(
n

βn

)
can be is bounded using the following

Lemma 1. If j ≥ s ≥ 0 and j + s ≤ n/2 then

b(n, j + s)
b(n, j)

≤ 1 +
(n− j + s

j − s + 1

)s

.

Proof.

b(n, j + s)
b(n, j)

≤ 1 +
s

max
i=1

(
n

j + i

)
/

(
n

j + i− s

)
≤ 1 +

s
max
i=1

(n− j − i + s

j + i− s + 1

)s

≤ 1 +
(n− j + s

j − s + 1

)s

.

By Lemma 1 we have b(n,l)
b(n,βn) ≤ 2

(
1−β

β

)c2m

. Thus, to achieve contradiction it is
enough to choose c2 so that

1 + c2m log((1− β)/β) + 2 log c2 + c3 < c2k. (2)

Indeed, by the choice of β we have m log((1 − β)/β) < k. Hence the left hand
side of (2) as a function of c2 grows slowly than the right hand side and for large
enough c2 the inequality holds.

We will show now that sometimes we need to flip Ω(
√

n) bits of x to increase
its complexity even by 1.

Theorem 7. There is a constant c such that for almost all n there is a string x
of length n and complexity at most n− 1, and such that the following holds: For
every string y obtained from x by flipping at most

√
n/c bits, C(y|n) ≤ C(x|n).

Proof. For every c1 there is c2 such the set of strings with at most n/2− c2
√

n
ones has cardinality less than 2n−c1 and therefore the complexity of every such
string is less than n−c1+2 log c1+c3. Pick c1 so that n−c1+2 log c1+c3 ≤ n−1.

Let x0 be a random string with at most l = n/2− (c2 + 1)
√

n ones. Assume
that for some x1 we have C(y|n) ≥ C(x|n) + 1 and x1 differs from x0 in at most√

n/c bits. In this case apply the same argument to x1 and so on, c times. Either
we will obtain xi differing from x0 in at most i

√
n/c bits satisfying the statement

of the theorem, or xc such that C(xc|n) ≥ C(x|n) + c. In the first case xi has at
most n/2− (c2 + 1)

√
n +

√
n = n/2− c2

√
n ones hence C(xi|n) ≤ n− 1 and we

are done.
Let us show now that the second case is impossible. We have C(xc|n) ≥

log
∑l

i

(
n
i

)
+ c and C(xc|n) ≤ log

∑l+
√

n
i

(
n
i

)
+ 2 log c + c4. By Lemma 1 we can

upper bound the ratio
∑l+

√
n

i

(
n
i

)
/

∑l
i

(
n
i

)
by

1 +
(n− l +

√
n

l −
√

n

)√n

= 1 +
(n/2 + (c2 + 2)

√
n

n/2− (c2 + 2)
√

n

)√n

≤ c5

for some constant c5 for large enough n. Therefore we will have a contradiction
if log c5 + 2 log c + c4 < c.

3 Increasing Kolmogorov Complexity via Expanders

In this section we will use, in place of Boolean cubes, graphs that have stronger
expansion properties. Recall the theorem of Margulis [6] on explicit expanders.

Theorem 8 (Margulis). Let k be an integer and G = (V,E) be the graph with
vertices V = {0, . . . , k − 1}2 where a vertex (x, y) is adjacent to vertices (x, y),
(x + 1, y), (x, y + 1), (x, x + y), and (−y, x) (all operations are mod k). There is
a positive ε such that for every A ⊂ V the set N(A) of all neighbors of vertices
in A has at least (1 + ε(1− |A|/|V |))|A| elements.

Let k = 2l. We will identify strings of length n = 2l and nodes of the Margulis’
expander G. Let Nd(u) denote the set of all nodes at the distance at most d from
u in the graph G. Let Nd(A) stand for the union of Nd(u) over u ∈ A.

Theorem 9. There is a constant c2 such that for every node u in G with
C(u|n) < n there is a node v ∈ N c2(u) with C(u|n) > C(v|n).

Proof. Let c be a constant to be specified later. Let c1 be the constant such that
for every n the number of strings y of length n with C(y|n) ≥ n is more than
2n/c1. Let c2 be a constant such that (1 + εc1)c2 ≥ 2c.

Assume that the statement of the theorem is false for some node u. Let us
exhibit a small set containing u. Let

Ai = {u′ ∈ V | ∀v ∈ N i(u′) C(v|n) ≤ C(u|n)}

where i = 0, . . . , c2. Obviously, Ai−1 = N(Ai) and therefore we have A0 ⊃ A1 ⊃
· · · ⊃ Ac2 . By definition, all strings in Ac2 have Kolmogorov complexity at most

C(u|n) < n. Therefore we can upper bound |A0| in two ways: |A0| ≤ 2C(u|n)+1

and |A0| ≤ 2n − 2n/c1. By expansion property we have

|A0| ≥ (1 + εc1)|A1| ≥ · · · ≥ (1 + εc1)c2 |Ac2 | ≥ 2c|Ac2 |.

Hence Ac2 is small, |Ac2 | ≤ 2−c|A0| ≤ 2C(u|n)+1−c. Since u is in Ac2 and Ac2

can be enumerated given l and C(u|n), we can describe u by its index in the
enumeration of Ac2 of length C(u|n)+1−c and by c (and C(u|n) can be computed
from the length of the index and c). Hence C(u|n) ≤ (C(u|n) + 1− c) + 2 log c +
O(1). If c is large then this is a contradiction.

Using Theorem 9 we may design a polynomial time algorithm that having
access to the oracle R̃ = {x | C(x | |x|) ≥ |x|} for every even length 2l finds a
string in R̃ of length 2l.

Theorem 10. There is an algorithm that having access to the oracle R̃ = {x |
C(x | |x|) ≥ |x|} for every even length 2l in time poly(l) finds a string in R̃ of
length 2l.

Proof. We will find strings u0, . . . , ul such that |ui| = 2i and ui ∈ R̃. Let u0 be
the empty string. Certainly u0 ∈ R̃.

To find ui given ui−1 append first 00 to ui−1 and let u be the resulting string.
As C(ui−1|2(i− 1)) ≥ 2(i− 1) we have C(ui|2i) ≥ 2i− c3 for some constant c3.
By Theorem 9 there is a string v at in N c3c2(u) such that v ∈ R̃. Making at
most 5c3c2 queries to the oracle R̃ we find the first such v and let ui = v.

Remark 2. The same argument applies as well to every set of the form {x |
C(x | |x|) ≥ f(|x|)} where f(n) ≤ n and f(n + 1) ≤ f(n) + O(log n) for all
n. In this case we search for v in N (c3+O(log n))c2(u) in place of N c3c2(u). As
N (c3+O(log n))c2(u) still has polynomial size the algorithm runs in polynomial
time. Note that the algorithm need no other information about f than the con-
stant hidden in O(log n).

Remark 3. The argument applies also to find random strings of odd lengths, but
that requires more technical details. Given a string u of even length n = 2l with
C(u|n) ≥ n we need to find a string v of odd length n = 2l +1 with C(v|n) ≥ n.
To this and we can use Margulis’ expander for the largest k such that k2 ≤ 22l+1.
Obviously k2 ≥ 22l and we may identify strings of length 2l + 1 ending with 0
with the first 22l nodes of the graph, and the other nodes with the first remaining
strings of length 2l+1. Again we have C(u0|2l+1) ≥ 2l+1−c3 for a constant c3.
For large enough l the difference between 22l+1 and k2 is less than 22l+1/(2c1)
where c1 is a constant such that the number of random strings of length 2l + 1
is at least 22l+1/c1. Therefore at least k2/(2c1) nodes in the graph are random
and we can apply the arguments from the proof of Theorem 9 with 2c1 in place
of c1.

Corollary 2. BPP ⊂ P R̃

Proof. Let M be a probabilistic machine recognizing a language A. Let n be
the length of input to M . We can assume that the probability that M errs on
at least one string of length n is at most 2−n. Let nd be the length of random
strings used by M on inputs of length n.

Here is the deterministic algorithm with oracle R̃ to recognize A: Find a
string r ∈ R̃ of length nd and run M on the input x using r as the sequence of
random bits for M (we use the same string r for all inputs x). Then output the
result of M .

If for some string of length n the answer is incorrect then the string r falls into
a set of cardinality 2nd−n that is identified by n and M and hence C(r|nd) ≤ nd−
n+O(1) < nd for n large enough, which is a contradiction. Thus our polynomial
time algorithm with oracle R̃ is correct for almost all inputs. Hardwiring the
table of answers for small inputs we obtain a polynomial time algorithm with
oracle R̃ that recognizes A (on all inputs).

Let us turn to the unconditional Kolmogorov complexity C(x). Let R =
{x | C(x) ≥ |x|}. We will show that Theorem 10, the next two remarks and
Corollary 2 generalize to R. As to Theorem 9, we can prove only a weaker its
version:

Theorem 11. There is a constant c2 such that for every node u in G with
C(u) < n there is a node v ∈ N c2 log n+c2(u) with C(u) > C(v).

Proof. Essentially the same proof, as for Theorem 9 but this time we need to
choose c2 so that (1 + εc1)c2 log n+c2 ≥ 2c+2 log n. In place of inequality C(u|n) ≤
C(u|n) + 1 − c + 2 log c + O(1) we have the inequality C(u) ≤ C(u) + 1 − c −
2 log n + 2 log c + 2 log l + O(1). The term 2 log n is needed as this time we have
to identify the length of u.

However, to prove the analog of Theorem 10 we need only to increase Kol-
mogorov complexity of strings u with C(u) ≥ |u| − O(1). For that special case
we have

Theorem 12. For every constant c3 there is a constant c4 such that for every
node u in G with n > C(u) ≥ n−c3 there is a node v ∈ N c4(u) with C(u) > C(v).

Proof. Again the same proof but in place of inequality C(u|n) ≤ C(u|n) + 1 −
c + 2 log c + O(1) we have the inequality C(u) ≤ C(u) + 1 − c + 2 log c + O(1).
This time we can find the length of u from the length C(u) + 1− c of the index
of u in Ac4 and from c, as C(u) and |u| are close to each other.

Therefore Theorem 10, the next two remarks and Corollary 2 generalize to
the unconditional Kolmogorov complexity.

References

1. Ahlswede, Gács, Körner. Bounds on conditional probabilities with applications in
multi-user communication. Z. Wahrscheinlichkeitstheorie verw. Gebiete 34 (1976)
157–177.

2. Allender, Buhrman, Koucký, van Melkbeek and Ronneberger. Power from Random
Strings. 43rd IEEE Symposium on the Foundations of Computer Science (2002)
669–678.

3. L.H. Harper. Optimal numberings and isoperimetric problems on graphs. J. Com-
binatorial Theory 1 (1966) 385–393.

4. G.O.H. Katona. The Hamming-sphere has minimum boundary. Studia Scientarium
Mathematicarum Hungarica 10 (1975) 131–140.

5. M. Li, P.M.B. Vitányi. An introduction to Kolmogorov complexity and its applica-
tions. New York, Springer-Verlag, 1997.

6. G.A. Margulis. Explicit constructions of concentrators. Explicit construction of con-
centrators. Probab. Info. Trans., 9 (1975), 325–332. (Translated into English from
“Problemy peredachi informatsii” 9(2) (1973) 71–80.)

7. Rosen (ed.), Handbook of Discrete Combinatorial Mathematics, CRC Press, 2000.

