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Abstract

We consider a fault tolerant broadcast network of n processors each holding one bit
of information. The goal is to compute a given Boolean function on the n bits. In
each step, a processor may broadcast one bit of information. Each listening processor
receives the bit that was broadcast with error probability bounded by a fixed constant
ε. The errors in different steps, as well as for different receiving processors in the same
step, are mutually independent. The protocols that are considered in this model are
oblivious protocols: At each step, the processors that broadcast are fixed in advanced
and independent of the input and the outcome of previous steps.

We present here the first linear complexity protocols for several classes of Boolean
functions. This answer an open question of Yao [28], considering this fault tolerant
model that was introduced by El Gamal [4] and studied also by Gallager [10].

Key words: ’Fault tolerant computations’, ’Noisy decision trees’, ’Gallager’s broadcast
problem’

∗a preliminary version of this work appeared in IEEE Conference on Computational Complexity 2004:
113-122.
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1 Introduction

In a fault tolerant scenario the outcome of any single operation is erroneous with probability
bounded by some constant ε. It is also assumed that errors for different operations are in-
dependent. Given a complex algorithm, one often wishes to get a noise-immune algorithm,
namely one that ends with an overall constant error probability. If the outcome of each
operation is Boolean, and there are total of t operations, then repeating each operation for
O(log t) times and taking majority as the outcome, typically results in a noise-immune algo-
rithm at the cost of O(t log t) operations. It would be desirable to construct noise-immune
algorithms paying less overhead. This fault tolerant scenario was extensively studied for
different computational models. Such work includes [19, 3, 20, 9, 21] for Boolean circuits
with noisy gates, [7, 21, 5, 15, 14] for noisy decision trees, [23, 22] for communication models
and others [25, 17, 8, 24, 2]. It turns out that for some models it is impossible to do better
than the overhead factor of O(log t) and sometimes there is a non-trivial better way.

El Gamal [4] formulated the following noisy broadcast network model, typical for some
radio networks. The system is composed of n processors using broadcasts as the means
of communication. At each step of a protocol, each processor may broadcast a bit, while
every processor receives all the bits transmitted knowing the source of each. Every single
bit received, at each processor, might be erroneous (in its value) with a probability bounded
from above by an a priori known constant ε. Furthermore, it is assumed that the errors for
different broadcasts, as well as for different receivers in the same broadcast, are independent.
At the beginning of the operation, each processor has one bit. The goal is to compute a
given Boolean function on all the bits. The complexity of the protocol is the total number
of broadcasts. The protocols that are considered are oblivious, that is, whether at a step i
processor Pj broadcasts or not may not depend on its initial bit or on what he has received
so far. It may only depend on n, i and j. The content of the transmission may depend on
the inputs. The reason for considering oblivious protocols is both practical, as a model of
certain radio networks, as well as the natural way to avoid situations in which information
is inferred from whether a certain Pi has broadcast or not, rather than from the content.
Note that for non-oblivious protocol, all the bits can be recovered in a single round of O(n)
broadcasts in which each processor that holds a ‘1’ broadcasts.

Gallager [10] showed that the parity functions can be computed in O(n log log n) broad-
casts which was the first improvement on the trivial O(n log n) solution. His protocol ends
with all processors knowing all bits, hence implying the same bound for every Boolean func-
tion. Yao [28] posed it as an open question whether the OR function (or other non-trivial
functions) can be computed in O(n) broadcasts. Very recently Goyal et al. [13] showed
that in order to recover all bits any protocol needs Ω(n log log n) broadcasts. However, it
is still open whether there is any Boolean function whose computation requires more than
linear number of broadcasts. For the specific OR function, Feige and Kilian [6] constructed
an O(n log∗ n) protocol that has the additional feature of taking O(log∗ n) rounds.

Other related models and results: A related, but more restricted model than the
fault tolerant model, which we call the ’statistical model’ assumes that the error probability
of each operation is exactly ε. Namely, there is fixed constant ε (known or unknown to the
protocol) so that for each pair of processors (Pi, Pj), the error of Pi when receiving a
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transmission from Pj is exactly ε. In particular, in such a model, the parameter ε can be
estimated, even if unknown, to any predefined precision, by sampling. A protocol, designed
for such model for the fixed parameter ε, is not required to work for the situation where ε
decreases and, in particular, if it becomes 0. In contrast, in the fault tolerant model the
error distribution is not known. There is only a guarantee that the error per operation
is at most ε and that errors are independent for different operations. Any adversarial
probability distribution that meets those limitation is a legitimate one. Hence, a fault
tolerant algorithm designed for a parameter ε should certainly work within its defined
complexity and error bound, for the situation in which the actual error is bounded by
any δ < ε, and in particular, for the errorless case.1 We note that Feige and Kilian, [6],
constructed their protocol for a somewhat stronger model than the fault tolerant. Roughly,
the noise is as in the statistical model, but at each round (or step) an omniscient adversary
can revert any erroneous message. Our algorithms can be seen to be suitable for this model,
however, this will not be discussed further.

Kushilevitz and Mansour [16] constructed a linear complexity protocol for computing
threshold functions in the statistical noisy broadcast model. Their algorithms are not correct
for the fault tolerant model. Goyal et al. [13], proved their lower bounds for the statistical
model (and hence the lower bound applies to the fault tolerant model as well).

Our Results: We answer in the affirmative Yao’s question: We construct here several
O(n) fault-tolerant protocols in the standard noisy broadcast model for various classes of
Boolean functions including the OR,AND, functions that have O(1) size 1-witnesses (0-
witnesses), functions that have linear size AC0 formulae and some other functions. Thus,
we give the first linear complexity protocols for both the OR function, and some other
interesting non-trivial classes of Boolean functions. We also show how to find the whole
input word using O(n log r) broadcasts, provided that the number of 1’s in the input is at
most r. Note that for r such that log r = o(log log n) this is better than Gallager’s bound.
We also treat briefly the issue of the number of rounds needed for the OR function. We
construct a O(n) complexity fault-tolerant decision tree algorithm of O(log∗ n) rounds and
show how to implement a variant of it as a O(log∗ n)-rounds protocol in the broadcast
model.

Our results are based on two main ingredients. The most important one is a reduction
of the task of computing Boolean functions in the broadcast network model to a certain
efficient fault tolerant computation in the noisy decision tree model. In order to implement
fault-tolerant decision tree algorithms in the broadcast model we introduce a property that
measures the adaptiveness of such algorithms, denoted here as the parallel time. We con-
struct new algorithms for some classes of Boolean functions for the noisy decision tree
model. In particular, we construct two linear algorithms for the OR, with one being simul-
taneously of total linear complexity and O(log∗ n) rounds (O(log∗ n) parallel time). The
second ingredient is a simple application of some ideas of parallel computing.

The rest of the paper is organized as follows: In Section 2.1 we define the model and
observe some basic properties. In Section 2.2 we define the noisy decision tree model and

1El-Gamal and Gallager worked in the information theoretic model and may not have considered the
fault tolerant one. However, Gallager’s algorithm is fault tolerant.
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present an O(n) fault tolerant algorithm for the OR. In Section 3 we describe a linear time
protocol for the OR function in the fault tolerant broadcast model. In Section 4 we discuss
the general issue of simulating fault tolerant decision trees by protocols in the broadcast
model, then in Section 5, we develop fault tolerant decision tree algorithms which can be
simulated in broadcast model for several classes of Boolean functions . In particular, to
do this we generalize the decision tree complexity to the case in which every variable has
its own query-cost and construct a fault-tolerant algorithm which is linear in the total cost
for the OR. Then, in Section 6 we discuss the all-bit word problem in which the outcome
should be that every processor knows the whole input word. In Section 7 we discuss briefly
algorithms for OR that are very efficient in terms of the total number of rounds, in both the
decision tree model and the broadcast model. Finally, in Section 8 we present some open
problems.

2 Preliminaries

2.1 The model

Let {P1, ..., Pn} be a set of n processors. An ε-fault tolerant protocol in the noisy broadcast
model is a sequence of m rounds; in every round j = 1, ...,m, a certain subset Sj ⊆ [n]
of the processors broadcast, one bit each. For each processor P ∈ Sj , every processor
Q, Q 6= P holds a random variable Xj

P,Q that equals the bit that was broadcast by P with
probability at least 1 − ε. We say that ε in this case is the bound on the communication-
error. In addition, the variables Xj

P,Q, j = 1, ...,m, P ∈ Sj , Q ∈ [n]−{P} are independent.
Furthermore, the subset Sj , namely the identity of the processors that broadcast at round
j is predefined in the protocol and is independent of the input or previous information that
processors might obtain in the rounds previous to j. Note that the value of the bit that is
transmitted by P at round j might depend on the input as well as the previous information
received by P . This restriction of being oblivious is to avoid trivialities such as the following
one round protocol: Each processor broadcasts if and only if it has a ‘1’. Then all input bits
become known to each processor, regardless of any error, just by detecting which processors
have broadcast. In the rest of paper we refer only to oblivious protocols.

The complexity of an oblivious protocol is the total number of broadcasts, namely
Σm

j=1|Sj |. Another complexity parameter that is of (secondary) interest is m, the num-
ber of rounds of the protocol. A protocol is said to compute a (partial) function f() if
for any allowed input x, it ends with a value fi at each processor i = 1, ..., n, such that
Prob[∃i f(x) 6= fi] ≤ 1/3.

As already discussed in Section 1, ε, the bound on the error probability is a priori
known. It is perfectly legitimate for an alleged adversary to corrupt each, say, odd round
j with probability δj < ε while letting each even round to result in an error-less reception
(or alternatively, decide for each processor R and each round j to corrupt Xj

R,P at the jth
round with probability pr,j < ε).

Any protocol can be serialized keeping the same number of broadcasts. We will some
times do this in order to refer to some particular order of the broadcasts within a round.
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In this case we talk about steps in which a single processor broadcasts.

Finally since simple amplification can be done in this model, the exact value of ε, the
communication-error bound, is not important. Also, for the same reason we could make the
final error probability bound to be any constant c < 1/2 (instead of 1/3) keeping the same
asymptotic complexity. Thus we say that a protocol is fault-tolerant in this model if there
are two constants ε, δ < 1/2 (and independent of the input length n) such that under the
assumption that the communication-error bound is at most ε, the total error probability of
the algorithm is at most δ.

An important ‘gadget’ that we recurrently use is the following computational task.
Suppose that a fixed known processor P holds a word w ∈ {0, 1}k that he wishes to make
known to every other processor. We denote this task as the faithful distribution of w. The
following simple observation states that ‘faithful distribution’ can be done efficiently.

Observation 2.1 Faithful distribution of w ∈ {0, 1}k to n processors takes O(max{k, log n})
broadcasts. As a result each processor knows w correctly with probability 1− 1/poly(n).

Proof: Suppose first that k ≥ 16 log n. Let us fix a linear size error correcting code that
corrects up to 1/3-fraction of errors (the fact that such codes exists and can be efficiently
constructed is known see e.g [18, 11, 26]). P1 encodes w using such a fixed code into a word
c(w) of size C(k) = O(k) and broadcasts each bit of c(w). Each Pi, i = 1, ..., n decodes w
from the received word. Pi erroneously decodes w only if more than C(k)/3 errors occurred.
By Chernoff bound [1], this will occur with probability at most exp(−2(1/3− ε)2C(k)). For
ε < 1/12, this would be less than 1/n2 (or below any 1/poly(n) for suitable ε). This
implies that with probability at least 1 − 1/n all processors have decoded w correctly. If
k < 16 log n we append w to itself d16 log n/ke times, to form a word of size k′ where
16 log n ≤ k′ < 32 log n. We then faithfully distribute it using O(log n) broadcasts.

2.2 Noisy Boolean Decision-Trees

A major ingredient in what follows are fault tolerant algorithms for noisy Boolean decision-
trees. Several such models were discussed in the literature. The relevant one to this work is
the seminal work of Feige et al. [7]. In this model, a given Boolean function on n variables
is to be computed on an unknown input using queries to the variables. As a standard fault
tolerant model, for each variable queried, an erroneous answer is received with probability
bounded from above by an a priori bound ε and independent of any other queries or answers.
Hence, an algorithm is a decision tree. In each step a variable is queried, then, based on
the answer a next variable is being queried and so on, until a final decision is made. The
complexity of such algorithm is the maximum number of queries for the worst case input.
Namely, it is the depth of the tree. A tree T computes a (partial) function if, for every
relevant input, its error probability is bounded by 1/3. Again, as standard amplification is
possible, we may replace the 1/3, as well as ε, with any other constants that are bounded
away form 1/2. Thus, here too, we say that a decision tree is fault-tolerant if there exist
two constants ε, δ < 1/2, such that if the query error is at most ε then the output error is
at most δ.
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An important parameter of complexity, although non-standard for decision trees, is the
amount of adaptiveness, which can be measured by the ‘parallel time’ of the algorithm.
Namely, for each input, the algorithm defines a certain path in the tree in which a sequence
of variables are probed one after the other. However, in many cases, this order is arbitrary
in the sense that the query at step j does not depend on the answer at step j − 1 for
some computational path. In such a case, the queries of step j − 1 and step j could have
been asked in parallel. If the algorithm is presented as a decision tree, then there is no
explicit parallelism. However, as we care about this extra parameter, the algorithms will
be described in terms of rounds: In each round a multiset of variables are queried. The
complexity of the algorithm is the total number of queries, while the parallel time is the
number of rounds for the worst case run. Feige et al. proved (among other things):

Theorem 1 [7] There is a fault tolerant decision tree for the OR function on n variables
of complexity O(n) and parallel time O(log n).

In Section 7 we construct a variant of this algorithm that is simultaneously of O(n) total
complexity, while it takes only O(log∗ n) rounds. The following is, however, simpler, (with
a much simpler analysis than of [7]), and will turn more ‘handy’ to simulate as a protocol
for the noisy broadcast model.

Observation 2.2 There is a fault tolerant decision tree T , that for any input x ∈ {0, 1}n

outputs an index i ∈ [n] which is the minimal for which xi = 1, if such i exists, or an
arbitrary i if OR(x) = 0. For every ε < 1/2, if the query error is guaranteed to be at most ε
then the failure probability is also bounded by ε. The complexity of T is O(n) and its parallel
time is O(log n).

Before we prove Observation 2.2 we introduce the following notation: For a multiset
S = (i1, . . . , ik) (which will always be assumed to be ordered) we let |S| = k, namely the
size of the multiset is the number of members in it counting multiplicities. For a multiset
S = (i1, . . . , ik) we denote by Maj(S) the element α that appears at least (k + 1)/2 times
in S. If there is no such α we set Maj(S) = i1.

Proof of Observation 2.2:
We assume that the query error is bounded by ε < 1/64 (otherwise we use amplification to
arrive to this situation). We then prove that the output of the algorithm will be incorrect
with probability bounded by 8ε. The error can then be reduced to ε by standard ampli-
fication. We also assume that n = 4k (otherwise let n′ be the smallest integer such that
n′ = 4k and n′ ≥ n. We then work with n′ instead of n and set xi = 0 for n < i ≤ n′). Let
m = n/4, the algorithm T will be recursive.

First every variable xi, i = 1, ..., n, is queried. Let zi, i = 1, ..., n be the corresponding
answers.

If n ≤ 4 then the output is chosen to be the smallest i for which zi = 1, if there is such
an i, or i = 1 otherwise.

If n > 4, [n] is partitioned into m disjoint subsets of size 4, denoted by blocks. In each
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block containing variables xj , ..., xj+3 an index i is chosen as follows: If all values are 0’s
then j is chosen. Otherwise, the minimal i ∈ {j, ..., j + 3} for which zi = 1 is chosen.

Let I ⊆ [n] be the set of m values thus chosen. Then T is applied recursively on I for 3
independent times resulting in a multiset (i1, i2, i3). The output is set to be Maj(i1, i2, i3).

Clearly the total complexity of T on n variables, denoted by a(n) is bounded by a(n) ≤
n+3a(n/4) which implies that a(n) ≤ 4n. It is also clear that the parallel time is O(log n).

Let εn be the error of the algorithm on n variables. We show inductively that εn ≤ 8ε
(which is easily checked for n ≤ 4). To analyze the error probability note that T can’t err if
OR(x1, ...., xn) = 0. Assume then that OR(x1, ..., xn) = 1 and let i be the minimum index
for which xi = 1. Then T errs if i /∈ I, or if i 6= Maj(i1, i2, i3). The probability of the first
event is clearly upper-bounded by 4ε, as for i not to belong to I, at least one of the four
values in the block that contains i must be wrong. The probability of the second event is
upper-bounded by 3ε2n/4 as at least two of (i1, i2, i3) must be wrong if i 6= Maj(i1, i2, i3). Our
assumption that ε < 1/64 together with the induction hypothesis imply that 3ε2n/4 ≤ 3ε,
hence the probability that T fails is bounded by 4ε + 3ε < 8ε as claimed.

Remarks:

1. The algorithm is described as a recursive algorithm. It will be convenient now to unfold
the recursion and think of it as running in t rounds for some fixed t = O(log n). Each
round i = 1, ..., t is associated with a multiset Si of the variables that are queried in
the ith round. Note that Si might depend on the answers to the previous queries.
However, note that the sizes |Si|, i = 1, ..., t, are fixed and independent of the input
or the current run.

2. Once the index i is found, as asserted by Observation 2.2, xi can be queried for
O(log n) times, enough to verify the value of xi, which is also the value of OR(x),
with probability at least 1− 1

n2 .

3 A fault tolerant protocol for the OR in the noisy broadcast
model

Our aim is to simulate the algorithm T of Observation 2.2 and find the first index of a
variable that is ‘1’ (if such exists) in linear number of broadcasts. It will now become
evident why the ‘limited adaptiveness’ is crucial. We note that the algorithm of [6] which
takes O(n log∗ n) broadcasts and O(log∗ n) rounds, also finds the first processor that holds a
‘1’ (if exists). Here we construct a protocol with O(n) broadcasts. In Section 7 we indicate
how to obtain a simultaneous O(n) complexity, O(log∗ n)-rounds protocol.

Theorem 2 Let P1, ..., Pn be n processors, each holding a Boolean value bi, i = 1, ..., n.
There is a fault tolerant protocol of complexity O(n), that ends with P1 holding an index
r ∈ [n]. If OR(b1, ..., bn) = 1 then r is the minimal index for which br = 1, otherwise r
is arbitrary. If the broadcast error is bounded by ε < 1/128 then the probability that the
protocol fails is at most 1/8.
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Proof: Let T be the algorithm of Observation 2.2. Following the first remark at the end
of Section 2.2, let Si ⊆ [n], i = 1, . . . , t = O(log n), be the multisets of variables that are
queried at round i. Recall that Si might depend on the answers of previous queries to
variables in Si−1, ..., S1, however, its size |Si| is known and fixed for all runs. Also, note
that Σt

i=1|Si| ≤ 4n (recall that |Si| is the size of the multiset counting multiplicities). Let
ε < 1/128 be the bound on the error probability in each broadcast.

The top level idea is the following: Assume that we have an extra processor P0 whose
role would be to ‘run’ the decision tree T . Namely, P0 will gather all the answers to the
queries done by T and at the end will hold the answer. In reality, as such P0 is not available,
its actions will be simulated by P1 in a straightforward way.

We first describe a non-oblivious protocol to simulate T . We then explain the details
of the oblivious protocol. To simulate the first round, P0 needs to query the variables in
S1. As T is known to all processors, this can be done by letting each Pi, i ∈ S1 broadcast
its value. At this point P0 has successfully simulated the first round of T . However, as
S2 depends on the values received for the queries of S1, in order to carry out the second
round in a similar way, each Pi needs to know the values that P0 obtained in the first
round of queries. This poses no real problem as P0 can faithfully distribute his word of
answers using O(max{|S1|, log n}) broadcasts, as described in Section 2.1. At this point
the second round of T can be simulated as before and so on. Thus the whole algorithm
will work in t = O(log n) phases, where phase i simulates the i-th round of T . Each
phase is composed of two sub-phases, in the first sub-phase every processor in the multiset
Pi = {Pi| i ∈ Si} broadcasts its value. In the second sub-phase P0 faithfully distributes the
‘answers’ it heard in the first sub-phase using O(max{Si, log n}) broadcasts. As Σ|Si| ≤ 4n
and the number of rounds t = O(log n), the total number of broadcasts is upper-bounded by
O(Σt

i=1 max(|Si|, log n)) = O(n + log2 n) = O(n). However, this protocol is not oblivious;
S2 depends on the answers to the the queries in S1 and hence the processors that need to
broadcast in the second phase are not known in advance. This, of course, is true for every
phase but the first.

It is important to note that in phase i, P0 does not specify Si itself but rather just the
answers to the queries in Si−1. As the tree T is known to all processors, this is sufficient to
uniquely determine Si. Hence, after the (i−1)th round was simulated, P0 needs to faithfully
distribute only |Si−1| bits of information in order to make Si known to all processors.

To solve the problem of obliviousness we assume in what follows the existence of addi-
tional 4n processors, H1, ...,H4n, denoted as helpers. The helpers do not have any values at
the beginning of the protocol. We will argue later that those 4n helpers can be simulated
by the real processors at no increase in the asymptotic cost.

We now get rid of the non-obliviousness as follows. We start by letting each processor
Pi, i = 1, ..., n broadcast its bit. As a result each helper Hj contains a ‘noisy copy’ Zj(i)
of the bit of Pi for every i. From this point on, the original processors P1, ..., Pn do not
participate in the protocol, only P0 and the helpers are responsible for the rest of the
work. Recall that T uses q ≤ 4n queries, divided into t multisets. We can serialize the
protocol and enumerate the queries as Q1, ..., Qq. Helper Hj , j = 1, ..., 4n, will be used just
once during the whole protocol - to simulate the answer to the jth query, Qj , done by T .
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Formally, the oblivious protocol works in t + 1 phases: In phase ’0’ each Pi, i = 1, . . . , n
broadcasts its bit. As a result every helper Hj holds a ’noisy copy’ Zj(i), i = 1, . . . , n. Let
s0 = 0 and si = Σi−1

j=1|Sj |, then, in phase i ≥ 1, Si is known by induction, and the helper
Hsi−1+j , j = 1, . . . , |Si|, broadcasts the value for the jth query in Si, which it has due to
phase ’0’. At this point P0 gets the answers and faithfully distribute them as described
before. This fully determines Si+1 which allows for the simulation of the next round.

Note that although the sets Si, i = 1, ..., t, are not known in advance, |Si| is known and
hence the helpers that broadcast at the ith phase are determined in advanced. Thus the
algorithm is oblivious.

Since we do not have the additional 4n helpers, then for every i = 1, ..., n, Pi simulates
helpers {Hj | j = 4(i− 1) + 1, ..., 4(i− 1) + 4}. To do this we need to repeat phase ’0’ for 4
times as we need that each helper will obtain an independent copy of each input variable.
Namely, each of the 4 simulated helpers within a processor will use the value of a different
and independent copy of the 4 repetitions of phase ’0’.

Finally, to analyze the error probability of the protocol note that from the point of view
of P0, the answers it gets are consistent with a simulation of the noisy decision tree with
query error bounded by 2/128. This is true as a value it hears from an helper might be
wrong due to the helper broadcast, or might be erroneous due to an error in the value that
the helper heard from the corresponding processor at phases ’0’. In addition, the values
heard by P0 from different helpers are completely independent. Another source of error is
the event that at least one of the faithful distributions fails. By Observation 2.1, this occurs
with probability smaller than 1/n2 for any specific faithful distribution. Hence, all rounds
of faithful distribution are correct with probability at least 1− o(1). This implies that the
total error is at most 1/8 + o(1).

Remark: We note that using helpers in the proof above works as the errors resulting from
the broadcasts of different helpers are independent. However, this is true as P0 is the sole
one to use this information. If more than one listener is using the information of any one
helper, all listeners might get the wrong value with constant probability as the helper might
have a faulty value.

The protocol above does not fully solve the OR function as only P0 knows an index r as
asserted by Theorem 2. It is quite simple to construct from it a protocol for the OR, which
in addition, produces a 1-witness in case the answer is ‘1’.

Theorem 3 There is an O(n)-complexity protocol that ends with each processor holding an
index i ∈ [n] and such that with probability 1 − 1/n2 all processors hold the same index i.
If OR(x1, . . . , xn) = 0 then with probability 1− 1/n2 every processor knows that the answer
is 0. If OR(x1, . . . , xn) = 1 then with probability at least 2/3, i is the smallest such that
xi = 1 and every processor knows the value of xi with probability at least 1− 1/n2.

Proof: First, the protocol of Theorem 2 is performed, which ends with P1 knowing an
index r as required. Now, P1 faithfully distributes the index r and then lets each processor
broadcast its value (this is just for the sake of being oblivious - the goal here is to get Pr
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to broadcast). Then in the following and final round each processor broadcasts the value it
heard from Pr and takes the majority of the values it receives in this round as the answer
to the OR.

Clearly, Theorem 3 implies an analogous result for the AND function.

4 A general simulation Theorem

The simulation of a decision tree algorithm by an oblivious broadcast protocol is quite
general.

Theorem 4 Let f : {0, 1}n −→ R be a (partial) function for which there is a fault tolerant
decision tree of complexity C(n) and parallel time t ≤ C(n)/ log n then f can be computed
by a fault tolerant broadcast protocol of complexity O(C(n)).

Proof of Theorem 4: Let T be a fault tolerant decision tree for f of complexity C(n)
and parallel time t ≤ C(n)/ log n. We first transform T into a decision tree T ′ of complexity
O(C(n)), in which exactly 16 log n queries are being made in every round. Then we simulate
T ′ by an oblivious protocol along the lines of the proof of Theorem 2.

To do this we call a round of T in which more than 16 log n queries are asked large.
We partition the queries of each large round into subsets of size exactly 16 log n, possibly
except for one, which is of size less than 16 log n. We then ask the queries in those subsets
in consecutive rounds. This results in an algorithm T ′′ in which in every round there are
either 16 log n queries or less. The number of queries in T ′′ is identical to that of T . It is
also easy to see that the parallel time of T ′′ is O(C(n)/ log n). Now we transform T ′′ into
T ′: we add arbitrary queries to every round in which less than 16 log n queries are made, to
make it of size exactly 16 log n. The parallel time remains O(C(n)/ log n) while each round
now is of size exactly 16 log n. This also implies that the total complexity is c′ = O(C(n)).

At this point we can simulate T ′ exactly as is done in Theorem 2, using c′ helpers.
Each round of T is of 16 log n queries, hence, the total overhead incurred by the faithful
distribution of answers is linear in c′. Finally, to simulate the c′ helpers by the original n
processors, as in the proof of Theorem 2, the initial ‘0’-phase should be repeated for c′/n
times as each group of c′/n helpers is simulated by a single processor and must receive c′/n
independent copies of each variable. This contributes a total of (c′/n) ·n = c′ broadcasts in
the first c′/n rounds. From there on, each processor simulates its helpers which is done in
O(c′) total number of broadcasts. This concludes the proof.

5 Fault Tolerant Decision Trees and Protocols for other func-
tions

We now describe several results for efficient fault tolerant decision trees for several families
of Boolean functions. All the decision trees that we describe are deterministic and with
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parallel time O(n/ log n). Hence, by Theorem 4, we obtain corresponding fault tolerant
broadcast protocols.

We first note that fault tolerant decision trees can be composed to form a fault tolerant
decision tree for the composition of functions.

Definition 1 Let 0 ≤ ε < 1/2. A decision tree is said to be an ε-fault tolerant decision
tree for a function f if under the assumption that each query is erroneous with probability
bounded by ε the output error is also bounded by ε.

Let f : {0, 1}n −→ {0, 1} be computed by an ε-fault tolerant decision tree of complexity
Cf and parallel time Tf , let g1, ..., gn : {0, 1}m −→ {0, 1} be Boolean functions each having
an ε-fault tolerant decision tree of complexity Ci and parallel time Ti, i = 1, ..., n, respec-
tively. Then the composition f(g1, ..., gn) : {0, 1}n·m −→ {0, 1} can be computed by an
ε-fault tolerant decision tree of complexity Cf ·maxn

i=1Ci and parallel time Tf ·maxn
i=1Ti.

This is due to the fact that one can ‘compose’ the algorithm for f with those for the g′s
in the straight forward way (as the assumption on the input error bound is equal to the
assumption on the output error bound). Namely, the algorithm for f(y1, ..., yn) is applied
and every time there is a query to yi, a new run of the algorithm to gi is made.

As an example let [n] be partitioned into m =
√

n disjoint ‘blocks’ B1, ..., Bm, each of
size m. We index n Boolean variables by [m]×[m] and let f = ∧m

j=1∨i∈Bj xi,j . To compute f
by a ε-fault tolerant decision tree we compute the top AND in O(m) queries using Theorem
2 amplified so that its output error is bounded by ε. Each query to a sub function in the
AND is answered by an independent run of a decision tree of an ORm function.

The above can be generalized to any AC0 formula by replacing Cf ·maxn
i=1Ci above with∑m

i=1 Ci in the case that f is the OR function. A Boolean formula here is just a Boolean
circuit with ∧,∨ as gates with unbounded fan-in, and fan-out=1. The inputs to the circuit
are literals, namely Boolean variables or their negation. The total size of the formula is
the number of literals and its depth is the longest path from an input to the output gate,
measured in term of the number of gates. A formula is said to be an AC0(s, d) formula2

if it has depth d and size s. Thus the example shown above is of an AC0(n, 2) formula.
The class AC0 is the standard notation for the union of all AC0(poly(n), d) formulae where
d = O(1) and n is the number of variables of the function.

Theorem 5 There are universal constant α, β > 1 such that if f : {0, 1}n −→ {0, 1} can
be computed by an AC0(s, d) formula, then f has a fault tolerant decision tree of complexity
O(αd · s) and O(βd logd n) parallel time.

In order to prove the theorem we will need to generalize our solution for the OR function
to the case in which each query has its own cost.

2This is slightly non-standard: AC0 is usually defined for circuits and with size s that is polynomial in
n. Then, the definition for formulae and circuits coincide. Here we have defined it for formulae and general
size s, although the application will only make sense for polynomial s (in fact linear or just slightly above
linear). We also note that usually AC0(s, d) denote the class of functions/languages that can be computed
by AC0(s, d) circuits rather than the class of circuits itself.

11



5.1 Complexity of decision trees with non-uniform queries costs

So far we have always considered queries of unit cost. It is of interest to consider non-
uniform costs. That is, queries to some variables cost more than to others. This is used
here for the proof of Theorem 5 and may be interesting on its own.

Definition 2 Let c : [n] −→ N be a cost function (identified with a cost function on the
variables {x1, . . . , xn}). A decision tree for f : {0, 1}n −→ {0, 1} relative to the cost c is of
complexity w, if for every possible root-to-leaf path the sum of the costs of the variables that
are queried is at most w.

Obviously, this definition carries on to deterministic trees, randomized trees (and expected
cost) and fault tolerant trees. With this definition, a standard decision tree is just an
instance of the priced case with unit costs. The error of a decision tree in the fault tolerant
model remains the same, only its complexity changes. The parallel time also remains the
same (and for the optimal tree it could depend on the cost function). The following theorem
generalizes Theorem 1.

Theorem 6 Let c : [n] −→ N be a cost function. Then there is a fault tolerant decision
tree for OR(x1, ..., xn) with respect to the cost c, of complexity O(Σic(i)) and parallel time
O(log n).

Proof: Let C = Σic(i) and let k = dlog Ce. For a subset S ⊆ [n] we denote c(S) = Σi∈Sc(i)
and OR(S) = ∨i∈Sxi.

We may assume w.l.o.g that all costs are powers of 2, otherwise we replace each cost
by the smallest power of 2 that is greater or equal to it. This increases the total cost by
at most a factor of two. We assume w.l.o.g that the error of any single query is bounded
by ε ≤ 1/100. We will show that for any S ⊂ [n], OR(S) can be computed in complexity
O(c(S)) and parallel time O(log |S|). We first consider a special case where all costs are
distinct powers of 2.

Case 1, distinct costs: Let S ⊆ [n] be a subset of the variables that contains no
two variables of the same cost. The following is an algorithm that computes OR(S) with
complexity O(c(S)), parallel time O(1) and error bounded by 1/100.

Algorithm A1(S): here S is a set of variables whose costs are distinct powers of 2.

Let {y1, . . . , yr} be a re-enumeration of the variables in S so that c(i) > c(i + 1).

For i = 1, . . . , r, we query yi 100i+1 times and set zi to be the majority of the answers.
We then output ‘0’ for OR(S) if for every i zi = 0 and 1 otherwise.

Claim 5.1 Algorithm A1(S) computes OR(S) with respect to the cost function c with error
bounded by 1/100, complexity O(c(S)) and parallel time 1.

Proof: Obviously the error of the algorithm A1(S) is bounded by the event that for
some i, zi 6= yi. By Chernoff bound [1], Prob(zi 6= yi) < 101−i for every fixed i. Hence
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Prob(∃i, zi 6= yi) ≤
∑

i 101−i ≤ 1/100. The complexity of the algorithm is Σi(100i+1)c(i).
Recall that by assumption, c(i), i = 1, . . . , r are distinct and each is a power of 2. Let
c(i) = 2ki , then the expression for the complexity becomes

∑r
i=1(100i+1)2ki ≤ Σr

i=1(100i+
1)2k1−i+1 = O(2k1) = O(c(S)). The parallel time is obviously just 1.

We now construct an algorithm for the general case. The algorithm will be recursive. It
will follow the general ideas of the algorithm for uniform costs (the algorithm of Observation
2.2) and will use at times the algorithm A1 of Case 1 above.

Recall that the costs are assumed to be powers of 2. Hence, there are ni variables, each
of cost 2i for i = 0, 1, . . . , k. Formally we denote by Alg(T ) the algorithm, where T ⊆ [n] is
a subset of the variables on which the OR has to be computed. To compute OR(x1, . . . , xn)
Alg will be called with T = [n]. The cost c is fixed and assumed to be concentrated only
on powers of 2 as explained above.

For every subset T ⊆ [n] we fix a partition of T , T = S1 ∪ S2 where S1 ∩ S2 = ∅, S1

contains n′
i ≡ 0(mod 4) variables of cost 2i for each i = 0, 1, . . . , k, and S2 contains at

most 3 variables of the same cost. Obviously such a partition is always possible to find by
grouping together variables with the same costs into blocks of size 4 and putting them into
S1 while putting the remaining variables (at most 3 of each cost) into S2.

Following is the formal description of Algorithm Alg(T ).

Alg(T ):

computing OR(S2): We partition S2 into at most three sets S1
2 , S2

2 , S3
2 each with variables

of distinct costs. Then we run A1(Si
2), i = 1, 2, 3 and take the OR of the three results.

computing OR(S1): Recall that the number of variables that have a certain fix cost in
S1 is divisible by 4. We split the variables of each cost into blocks of size 4, query all
the variables once and chose from each block the variable with the smallest index in
the block for which the value 1 is obtained (if there is no such variable, we choose the
one with the minimal index in the block). Let T1 be the resulting subset of variables.

We next call Alg(T1) to compute recursively OR(T1), for 3 independent times and
take the majority of the 3 results as the output for OR(S1).

We note that in the base case the algorithm always stops the recursion when S1 = ∅.

combining the partial results: The final output is just OR(S2) ∨OR(S1).

We note that for the case of uniform costs, the algorithm essentially reduces back to that
of Observation 2.2.

We first analyze the error of the algorithm. By Claim 5.1 OR(Si
2), i = 1, 2, 3 is

computed with error bounded by 1/100, complexity O(c(Si
2)) and parallel time 1. Thus

OR(S2) is computed with total error bounded by 3/100, complexity O(c(S2)) and parallel
time 1. (Note that the hidden constant in the expression for the complexity is a universal
constant - it does not depend on n or c, neither it depends on ε as long as ε ≤ 1/100).

Let us assume inductively on the size of |S1| that the error of Alg(T ) is at most δ = 1/10.
For the base case S1 = ∅ hence the error is determined by the computation of OR(S2), which
is indeed lower than 1/10, as shown above.
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We now assume that this was already proved for any T ′ for which |S1| < 4`. Let T ⊆ [n]
be such that in the partition as defined in the algorithm |S1| = 4` (note that by assumption
|S1| ≡ 0( mod 4)), and consider Alg(T ). Then, an error in computing OR(S1) occurs
either if the variable with the minimum index that is ’1’ does not get to be included in
T1, or if there is an error in one of the three recursive calls to Alg(T1). The first event
happens with probability 4ε ≤ 4/100, since for this to happen at least one on the four
queries to the variables in the block containing the minimum indexed variable that is ’1’
has to be answered erroneously. The second event happens if at least two of the three
independent recursive calls return an erroneous answer. By induction this is bounded by
3δ2 ≤ 3/100. Thus the total error in computing OR(T ) = OR(S2) ∨ OR(S1) is at most
3

100 + 4
100 + 3

100 = 1/10 as required.

To bound the total complexity, let f(B) denote the total complexity of Alg(T ) on a
subset of variables whose total cost c(T ) = B. We get the recurrence f(B) ≤ O(B) +
3f(B/4). This is true as in S1 each block contains 4 variables of the same cost and hence
the remaining set T1 on which Alg is called recursively has total cost c(T1) = c(S1)/4 ≤ B/4.
Obviously, this implies that f(B) = O(B).

To assess the parallel time we note that each recursion level is done in one round. Hence,
the parallel time is bounded by the recursion depth which is O(log |T |). This is true as in
each recursive call the size of set of inputs is decreased by a factor of at least 4. This
concludes the proof of Theorem 6.

We now are ready to prove Theorem 5.

Proof: (of Theorem 5). Fix any ε < 1/100. We use induction on the structure of the
formula for f . Assume w.l.o.g that f = ∨m

j=1gi where gi has AC0(si, d−1) formula, namely,
of depth d − 1 and size si. Let α and β be the hidden constants in the expressions for
the cost and parallel time, respectively, for computing the OR relative to a cost function
in Theorem 6. By induction every gi has a 1

100 -fault tolerant decision tree Ti of complexity
bounded by αd−1 · si and parallel time O(βd−1 logd−1 n). Then the following is an 1

100 -fault
tolerant decision tree for f : Apply an 1

100 -fault tolerant decision tree for OR(y1, ..., ym)
with costs c(i) = αd−1si, i = 1, . . . ,m where each query to a variable yi is replaced by an
independent run of Ti. Obviously the resulting decision tree is a 1

100 -fault tolerant decision
tree for f . Now, the existence of a 1

100 -fault tolerant decision tree for OR(y1, ..., ym) of
complexity bounded by α ·Σc(i) and parallel time β log m is asserted by Theorem 6 (using
amplification to reduce the output error below 1

100) and the induction hypothesis. Hence
the total complexity and parallel time is as claimed.

Corollary 5.1 If f can be computed by an AC0(O(n), d) formula for some d = O(1) then
f has a fault tolerant decision tree of complexity O(n) and parallel time O(logd n).

Another class of functions that can be computed efficiently in the fault tolerant decision-
tree model is the class of functions that have O(1) size 1-witness3 or O(1) size 0-witness.
King and Kenyon, [15], proved that any function of O(r) size 1-witness (not necessarily

3a 1-witness is a minimal assignment to a subset of the variables that ensures that the function is 1. A
0-witness is defined analogously. For exact definitions and more material on this see [27].
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monotone) can be computed by a fault tolerant O(n log r) size decision tree. However, their
algorithm may have linear parallel time. We show;

Theorem 7 Let f be a Boolean function whose 1-witness size is at most r = O(1), then
f can be computed by a fault tolerant decision tree of complexity O(n) and parallel time
O(log2 n).

The dependence of our algorithm on r, the witness size, is given explicitly in Theorem 8
and is much worse than that of [15]. As we aim for linear algorithms (that is for r = O(1))
we do not try to optimize this dependence. The algorithm is quite different from that of
[15]. The proof will follow from Theorem 8 for monotone functions.

As a corollary of Theorem 7 and Theorem 4 we get

Corollary 5.2 Let f be a Boolean function f whose 1-witness size or whose 0-witness size
is at most r = O(1). Then f can be computed by an O(n) fault tolerant broadcast protocol.

A monotone function has minterm-size ≤ r if there are subsets S1, . . . , St ⊆ [n] each of
size at most r, called minterms, and such that f can be written as f = ∨t

i=1∧j∈Si xj . Thus,
The OR has minterms of size 1 and the Majority function on n variables has minterms of
size dn+1

2 e.

Theorem 8 Let f be a monotone Boolean function whose minterm size is at most r, then
f can be computed by a fault tolerant decision tree of complexity O(nr log2(2r)) and parallel
time O(r2 log2 n).

Proof of Theorem 8: As we apply the result for r = O(1) we do not try to optimize the
dependence of the complexity in r. In addition, we omit d e signs even when the numbers
must be integers to improve readability.

We assume in the following that r < log n; for r ≥ log n the result is trivial as any
function has a fault tolerant decision tree of complexity O(n log n) and parallel time O(1).

We will need the following simple observation.

Observation 5.1 Let S ⊆ [n] be a set of variables and let k be an integer. There is a fault
tolerant decision tree whose complexity is O(|S|(log k + log |S|)) and parallel time 1, that
evaluates correctly all the variables in S with error probability at most 1/(20k2).

Proof: We query each variable a · (log |S|+ log k) times and take the majority value of the
answers as its ’computed value’. The constant a = a(ε) is chosen so that the probability
that the majority value is incorrect is bounded by 1/(20|S| · k2). By Chernoff bound [1],
there is indeed such constant a for any ε < 1/2. Thus, the probability that any of the
variables is evaluated wrongly is bounded by 1/(20k2) .
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Definition 3 Let S ⊆ [n] be a set of variables, the fault tolerant decision tree that is
implied by Observation 5.1 will be denoted as trivially k-evaluating S. If there is a function
f : {0, 1}S −→ {0, 1}, that is, on variables indexed by S, then evaluating f by trivially
k-evaluating S will be denoted as trivially k-evaluating f .

Let f : {0, 1}n −→ {0, 1} be a monotone function on n variables whose minterm size is
bounded by r. Let MIN(f) be the set of minterms of f . Thus f = ∨P∈MIN(f) ∧j∈P xj . We
represent the collection of minterms of f of size exactly r by a hypergraph Hf = ([n], E) in
which every hyper-edge e ∈ E is a minterm. A matching in Hf is a collection of pairwise
disjoint edges. A cover of Hf is a subset C ⊆ [n] such that for each e ∈ E there is an i ∈ C
such that i ∈ e. Note that if M is a maximal matching in Hf then ∪e∈Me is cover of size
r · |M |. For a minterm P ∈ Hf we denote by P (x) the Boolean function P (x) = ∧i∈P xi.
Namely, P (x) = 1 whenever the minterm P is 1.

For r = 1 f is the OR function. We thus assume in the following that 2 ≤ r < log n.
We also assume in the following that the bound on the query error ε ≤ 1/(20r3 + 1) and
explain at the end how this assumption affects the complexity. We note that although the
algorithm is recursive (we use induction on r), this bound on the query error is fixed and
does not changes during different calls for the algorithm when r decreases.

The top level idea is the following dichotomy into two cases:

case 1: If there is a cover C of Hf of size at most (n/ log n) then we trivially n-evaluate
the variables in C and restrict ourselves to the subfunction f1 = f |C̄ that is defined on
the variables outside C, by substituting in the evaluation for the variables in C. As each
minterm is covered by C, it follows that f1 has minterms of size bounded by r−1. Applying
the induction hypothesis ends the proof in this case.

Case 2: If there is no cover of size at most (n/logn) then by the observation above,
every matching in Hf is of size at least n/(r log n). Let M be a matching in Hf of size
m = n/(r log n). We may always assume the existence of such a matching as we can take a
partial matching if the size of a certain matching is larger than the threshold above. Then,
f can be written as fM ∨ f ′ where fM (x) = ∨P∈M (P (x)) and f ′ is the function whose
minterms are in MIN(f)−M . Note that fM is an OR of m disjoint minterms.

In this case we first evaluate fM using the ε-fault tolerant algorithm for OR (of Observa-
tion 2.2). If fM evaluates to 1 then this implies that f is 1 too. Otherwise, if fM evaluates
to 0, assuming that this is the correct value of fM , it implies that every minterm in M must
contain a variable that is 0. Thus there exists a set of m variables each of value 0. We will
show how to find a subset of such a set of size at least m/2 and restrict f to the rest of the
variables. Thus our gain will be that either case 1 occurs, in which the restricted function
has minterms of size r − 1, or that case 2 occurs in which we end up computing a function
on only n−m/2 variables.

We now formally present the algorithm as a recursive algorithm.

Algorithm A(f,n,r)
f is a monotone function on at most n variables and has minterms of size at most r.
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For each variable xi we keep a count count(r)(xi) that equals to the number of 1 answers
minus the number of 0 answers in all the queries to xi.

1. If r = 1 then f = ∨n
i=1xi. Compute f by the algorithm in Observation 2.2.

2. If f depends on at most n/logn variables we trivially n-evaluate f .

3. If there is a cover C of Hf of size at most n/ log n then we trivially n-evaluate all
variables in C. Now we may restrict ourselves to the subfunction f1 = f |C̄ that is
defined on those variables outside C, by substituting the evaluation for the variables
in C. If f1 is already determined then we are done. Otherwise, as each minterm in
Hf is covered by C, it follows that f1 has minterms of size bounded by r − 1. We
compute f1 by calling recursively A(f1, n, r − 1).

4. If there is no cover of size at most n/logn then by the discussion above, every matching
in Hf is of size at least n/(r log n). Let M be a matching in Hf of size m = n/(r log n)
and let fM (x) = ∨P∈M (P (x)).

(a) We compute fM by applying the algorithm of Observation 2.2 for OR(y1, . . . , ym),
where we take yi = Pi(x). Every time we need to query yi we start a new trivial
r-evaluation of Pi(x).
If fM = OR(y1, . . . , ym) evaluates to 1, recall that the algorithm of Observation
2.2 also provides an index i for which yi = 1. We trivially n-evaluate Pi where Pi

is the minterm associated with yi. If Pi evaluates to 1 then we stop and output
1 for the whole function.

(b) Set S = {i| count(r)(xi) < 0}. If |S| < m/2 we stop and output the value 1 for
f . The reason for this is that if fM (x) = 0 it will be shown that |S| < m/2 with
very small probability. Thus we don’t really expect the algorithm to enter this
case. However, this will allow us to guarantee that in the alternative, that is in
step 4c below, n′ is small enough.

(c) Otherwise, if |S| ≥ m/2 we substitute 0 for every variable in S and compute
the restricted function, f |S̄ , on n′ = n − |S| variables by calling recursively
A(f |S̄ , n′, r).

We first analyze the complexity: In steps 1, 2 a work of O(n) is done. These serve as
the base cases for the induction.

If step 3 occurs then the trivial evaluation of C takes O(n) queries, after which we reduce
the computation to a function whose minterms are of size at most r − 1. Otherwise, each
trivial evaluation of P (x) in step 4a takes O(r log r) queries. Computing OR(y1, . . . , ym)
takes O(m) such trivial evaluations using the algorithm for the OR. Thus this takes a total
of O(m · r log r) = O(n log r/ log n) queries. To this we possibly need to add O(r log n)
queries for the trivial n-evaluation of Pi in case that fM evaluates to 1. After step 4a we
either stop (at step 4b), or make a recursion call at step 4c.
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Let f(n, r) be the maximum number of queries of A(f, n, r) for the worst case of f, n
and r. We get the recurrence:

f(n, r) ≤ max
{

O(n), O(n) + f(n, r − 1), O(
n log r

log n
+ r log n), O(

n log r

log n
+ r log n) + f(n− m

2
, r))

}
The first O(n) term in the max is for the base case (step 1 or 2). The second term is

when step 3 occurs, the third is when we stop after step 4a or after step 4b, and the fourth
term is when we end up doing step 4c.

The right hand side of the bound for f(n, r) is dominated by the second and fourth
terms in max{} (for our choice of r and m). As can be checked by substitution, f(n, r) =
O(nr log(2r)) solves the recursion. Recall that we assume a bound of 1/(20r3 + 1) on the
query error. This is achieved by simulating each query using Θ(log r) real queries, which
brings in another factor of O(log r), implying the claimed complexity.

The parallel time is bounded by O(n/m) · O(log n) · r = O((r log n)2). This is so as
to reduce r to r − 1 it either takes one round if step 3 occurs, or step 4 can be iterated
O(n/m) times and each path through step 4 is done in O(log n) rounds (spent on computing
OR(y1, · · · , ym)).

We now analyze the error probability of the whole algorithm. Before we proceed we
note that for a 1 valued variable xi, the probability that there is a step in the algorithm
(in the top recursion level) for which count(r)(xi) < 0 is upper-bounded by p

1−p where p
is the query error. This is by standard analysis in which the value the random variable
count(r)(xi) assumes is viewed as a random walk on the integers, see e.g [12] Chapt. 3.
Plugging in p < 1/(20r3 + 1), we get that count(r)(xi) < 0 for a 1-valued variable xi with
probability at most 1/(20r3). Similarly, a 0-valued variable becomes of positive count with
the same probability.

Consider first a 1-input, x. We fix an arbitrary enumeration of the minterms of f and let
P ∗ be the first minterm according to this enumeration for which P ∗(x) = 1. The algorithm
may result in an erroneous 0 answer in the following three cases: The first is if at step 2 or 3
there is an error in the trivial n-evaluation of C. By definition, each of these happens with
probability at most 1/(20n2). Step 2 may be entered only once during the whole algorithm.
Step 3 may be entered at most r − 1 times, as after each path through it r decreases by
at least 1. Thus this contributes at most r/(20n2) to the total error. The second case is
when at least one variable xi belonging to P ∗ becomes of negative count and thus f may
be restricted to be the 0-function at step 4c. There are at most r variables in P ∗ and each
may become of negative count with probability at most 1/(20r3), thus the probability that
this event occurs during the whole algorithm is at most r · 1

20r3 = 1/(20r2). The only other
case is an error at the base case for r = 1, which by Observation 2.2 may be assumed to be
say, 1/8. Thus the total error for x is at most r

20n2 + 1
20r2 + 1

8 ≤ 1/3.

To bound the error for a 0-input, y ∈ f−1(1), note that the only way the algorithm may
end with a faulty 1 answer, in the top recursion level, is in the following three cases. The
first is when the algorithm makes an incorrect evaluation of the variables in C at step 3. The
second is when the function fM (y) evaluates to 1 followed by a faulty trivial n-evaluation
of Pi = 1. Obviously each of this events happens with probability at most 1/(20n2). The
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third case is if at step 4b less than m/2 of the variable became of negative count resulting
in a 1-output. Note that if f(y) = 0 then also fM (y) = 0. Recall also that fM is the OR
of m disjoint minterms. Thus if fM = 0 then each of the m disjoint minterms in M must
contain a variable that is 0. The probability that such a variable becomes of positive count
is, as noted above, at most 1/(20r3). Moreover, for different variables these are independent
events. Thus Chernoff bound [1], asserts that less than m/2 variables become of negative
count with probability less than exp(−Ω(m)) ≤ 1/(20n2).

Thus, an error for y occurs in the top recursion level with probability at most 3/(20n2).
There are at most 2r · (n/m) recursion calls, since step 4c may be entered at most 2n/m
times after which r decreases by at least one. This implies that f(y) is computed erroneously
with probability at most 6r2 log n

20n2 ≤ 1/3.

Proof of Theorem 7: Let f be a Boolean function on the variables x1, . . . , xn, with
r-size 1-witnesses. Then f can be written as f = ∨iWi(x) where each Wi corresponds to a
distinct 1-witness and is a conjunction of at most r-literals (see e.g [27] for more details on
this). Let z1, . . . , zn be n new variables. We replace every appearance of x̄i (the negation of
xi) in the formula for f , with zi. This results in a new monotone function f ′ on 2n variables
with minterm size at most 2r, and for which f is a subfunction. We then evaluate f ′ on
the new variables while treating xi, zi as independent variables. The Theorem now follows
from the monotone case.

6 Recovering the whole input word

As mentioned in Section 1, Gallager’s protocol is a fault-tolerant algorithm that computes
the whole input word in O(n log log n) broadcasts. Theorem 3 implies that the whole input
word can be computed in O(n · r log r) broadcasts, provided that there are at most r 1’s in
it (just by finding the OR r times, each with error probability reduced to 1/(3r)). Can we
do better? We get.

Theorem 9 For any r, there is a fault tolerant protocol of complexity O(n log r) that for
every input word, it either computes the whole word, or it finds at least r positions in the
word that are ‘1’.

Proof: Note that for r such that log r = Ω(log log n) the whole word can be computed
in O(n log log n) by Gallager’s result. Hence, we assume in the following that log r =
o(log log n).

Instead of describing a protocol for the broadcast model, we describe an algorithm for
the noisy decision tree model that ends by finding r 1’s (if exist). This algorithm can then
be turned into a protocol for the broadcast model as asserted by Theorem 4.

The decision tree algorithm is as follows. We assume that the query error is bounded by
1/(10r3). This is done using simple amplification at the cost of Θ(log r) queries of 1/3-error
bound. We call such query a superquery. We partition [n] into m = r2 disjoint blocks, each
of size n/m. The algorithm first computes the OR in the first block using the algorithm
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in Observation 2.2. Recall that assuming a query-error bounded by ε the algorithm in
Observation 2.2 will end by outputting the first variable in the block that is 1 (if such
exists) with probability 1 − ε. Once such a variable xi1 of value 1 is obtained then i1 is
taken to be in the set of indices that the algorithm will return. In this case, the algorithm
will remove i1 from the block and repeat its action. If the value of the OR on the block is
0, then the algorithm moves to the next block. It does so until it either collects r indices
on which it received an answer 1, or the OR in every block evaluates to 0.

The final output is the set of indices thus obtained. In each round of computation
O(n/m) superqueries are made in order to compute the OR of the variables in a block.
Thus in total, at most max{r, m} · O((n/m)·) = O(n) superqueries are made which is
equivalent to O(n log r) simple queries. The parallel time is max{r, m} · log n = O(log2 n)
and the error probability for any phase out of the max{r, m} phases is bounded by 1/(10r3)
thus in total it is at most 1/(10r) ≤ 1/10.

7 Algorithms for OR of log∗ n parallel time

We first describe here a fault-tolerant decision tree algorithm for the OR that has simulta-
neous O(n) total complexity and O(log∗ n) rounds. We then indicate how to simulate it in
the broadcast model. Recently [14] have proved that this is best possible for the decision
tree model. For the broadcast model we still can’t rule out a protocol of total complexity
O(n) and O(1) rounds.

Theorem 10 There is a fault-tolerant decision tree algorithm that computes the OR of n
variables, using O(n) queries in O(log∗ n) rounds.

Proof: In the following we assume that query error bound is ε < 1/6. In particular, by
Chernoff bound (e.g [1]), if we query a variable m times and take the majority answer then
the probability that the value is wrong is at most 2−m.

We adopt the strategy of the algorithm of Observation 2.2, but unfold the recursion
using a somewhat different trade-offs between number of queries and error probability. We
will have at each round i = 1, . . . a set Ii ⊆ [n] of variables that is supposed to hold the
minimum index ` ∈ [n] for which x` = 1 (if such ` exists). Then, at stage i, every variable
xj , j ∈ Ii is going to be queried ki times, and a majority vote, Mj , on those values is going
to represent its value for the ith round. Based on Mj , j ∈ Ii, the next subset of candidates
Ii+1 ⊆ Ii is going to be formed as follows: we are going to divide Ii into blocks of size
bi. Each block will contribute a single variable to Ii+1 - namely the variable of minimum
index in the block that has value ‘1’ (or an arbitrary variable in the block if all evaluated
to ‘0’). This is done until Ii is narrowed down to less than n/ log n at which point, every
variable can be queried 100 log n times, enough to know its value with confidence better
than 1− 1/n2.

Formally, let ni = |Ii|. We denote by ki the number of queries that each variable is
going to be queried at round i, and by bi the block size at round i. Querying each variable
ki times and taking majority will implies an error ei ≤ 2−ki on the value we take for such
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a variable at round i. We then divide Ii into blocks of size bi = 2ki · 2−(i+2), out of which
the variable of minimal index of value 1 will enter Ii+1.

We start with round 1 in which I1 = [n] thus n1 = n, and with k1 = 100 and b1 = 2k1−3.
For general i ≥ 2 we set ni = ni−1/bi−1, ki = 100n

ni
· 2−(i−1) and bi = 2ki · 2−(i+2). Thus

assuming that the size of Ii−1 is ni−1, and that we divide Ii−1 into blocks of size bi−1 from
which one member is to enter Ii then the size of Ii is exactly ni.

To analyze the total complexity, recall that at round i we query ki times each variable
in Ii. Thus, a total of ni · ki = 100n2−i+1 queries are made at round i. The sum over all
rounds is O(n).

To analyze the number of rounds, note that ki+1

ki
= 0.5 ni

ni+1
= 0.5bi = 0.5 · 2ki · 2−(i+2).

In other words, ki+1 = ki · 2ki · 2−i−3 ≥ 2ki . Thus after log∗ n rounds ki = Ω(n), hence
ni = O(1).

Finally, to analyze the error probability, note that if all variables are 0 then there is
no error before the last phase. Assume then that ` is smallest for which x` = 1. Then
the algorithm errs before the last phase if ` /∈ Ii for some i. However, by our setting, the
error in the value that is computed for each queried variable at round i is ei = 2−ki while
bi = 2−(i+2) · 1

ei
. Hence, conditioned on the event that ` ∈ Ii, the probability that there

is an index in the block containing x` (that is, among the bi variables) that is evaluated
erroneously is at most 2−(i+2). Thus, conditioned on the event that ` ∈ Ii, the probability
that ` /∈ Ii+1 is at most 2−(i+2). Summing up for every i we conclude that the probability
that ` is in every Ii, i = 1, . . . is at least 3/4.

Theorem 11 There is a 1/4-fault tolerant protocol, in the noisy broadcast model, that for
any input x ∈ {0, 1}n it ends with all processors knowing the index ` which is the smallest
for which x` = 1 or arbitrary index if OR(x) = 0. The protocol makes O(log∗ n) rounds and
total complexity O(n).

Proof: The top level idea is to simulate the algorithm of Theorem 10. The difficulty is
that the faithful distribution of the winners in each round is inherently sequential due to the
centralized control. To remedy this we ‘distribute’ the global knowledge. In the following
description, a processor Pj sometimes needs to broadcast a ’fresh-value’ of some variable
xi. We assume that it contains a sequence of independent copies x

(1)
i , x

(2)
i , . . . of xi, each

which could be erroneous with probability ε, and each time it needs a fresh copy it takes
the next value in this sequence.

The algorithm will consist of O(log∗ n) rounds. In each round i = 1, . . . there will be a
set Ii ⊆ [n] that should contain the minimum index ` such that x` = 1. Similarly to the
algorithm of Theorem 10, the size of Ii will decrease very rapidly which will provide the
O(log∗ n) bound on the number of rounds. Formally, in each round, [n] is partitioned into
disjoint blocks of uniform size. The partition Bi−1 of round i− 1 will be a refinement of the
partition Bi. That is, each block of Bi is a union of bi blocks of the partition Bi−1. Let si

denote the size of the blocks of Bi. If round i−1 is successful for a block B ∈ Bi−1 then the
smallest index j ∈ B for which xj = 1 is the ‘winner’ in B at round i − 1 and it is known
to every processor in B. Then in round i we do the following, in each block B ∈ Bi:
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Round i:
Recall that for such B, B = ∪bi

j=1Bj where Bj ∈ Bi−1. Formally we set b0 = 1.

1. For every j = 1, . . . , bi, every processor among the first bi−1 processors in Bj broad-
casts a ‘fresh copy’ of the value of w where w is the winner of Bj (at round i− 1).

2. Every processor Pk, k ∈ B hears for every j = 1, . . . , bi, the bi−1 broadcasts of every
Bj-winner. He takes the majority of the bi−1 values per winner and takes the result
as his own idea of the winner’s value in each Bj ∈ B.

3. Based on the winner-values, each processor in B decides what is the smallest indexed
block, Bj , from which a winner of value 1 is obtained, and takes this block as the
block-winner of B.

4. At this point all the processors in B know the block Bj that contains xr, the minimum
indexed variable of value ‘1’ in B. However, they don’t know r itself. The purpose of
this step is to make r known to every body.

If i = 1 go to next step, for i ≥ 2, assume that the winner is from a certain block Bj

(every processor may have a different idea of who is the block-winner - we will show
that with very high probability all processors have the same block-winner in mind).
The first bi−1 processors in Bj broadcast the identity of the winner. This identity
is fully specified by log si−1 bits that are broadcast in one round - each bit being
broadcast by bi−1/(log si−1) processors. In addition, to make this oblivious, in every
other block Bk, k 6= j the first bi−1 processors broadcast an arbitrary bit in this step.

5. Each processor P ∈ B takes the majority of the values of the individual identity bits
of the winner and set this as the identity of what he perceives as the unique winner
for B.

The algorithm proceeds this way until round i in which Bi contains just one block. At
this point there is only one winner known to all processors.

What needs to be defined next is how the whole thing is started, what is bi and how the
‘fresh-copies’ are obtained.

We assume in the following that the query error is at most ε is such that 2ε ≤ 2−64.
We start with round 1 in which I1 = [n] we formally set B0 = [n]; that is, each block is a
singleton and b0 = 1. We set b1 = 212 and for i ≥ 2 we set bi = 2bi−1/(3 log bi−1). Recall that
si is the block size of Bi and thus si = bi · si−1 =

∏i
j=1 bj . Before we proceed we note that:

Claim 7.1 For every i ≥ 1

• si =
∏i

j=1 bj ≥ 2i−2bi · bi−1.

• 2bi/(log si) ≥ 2i+6 · si+1 · log si.

• 2bi ≥ s2
i+1 · 2i+6.

• for i = 2 log∗ n, bi > n.
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Proof: The proof of the first, second and fourth items is by induction on i. The third
item is a weaker inequality than the second.

We first analyze the algorithm assuming that fresh-copies are available as needed.

The complexity of step 1 of round i is n
si
· bi · bi−1 ≤ n · 2−i+2 (the last inequality is by

the first item in Claim 7.1). The same complexity is incurred at step 4. The other steps do
not involve any broadcasts. Thus the overall complexity is at most 8n.

By the fourth item in Claim 7.1, after i = 2 log∗ n rounds the block size (which is at
least bi) is more than n and thus |Ii| ≤ 1. Thus the number of rounds is at most 2 log∗ n.

We now bound the error probability. Let x be any input for which OR(x) = 1 (there is
nothing to prove if OR(x) = 0), and let ` be the smallest for which x` = 1. For i = 1, . . . let
B(i) ∈ Bi be the block that contains ` and Gi be the event that at round i, ` is known as
the winner of the corresponding block B(i) by every processor in B(i). Also, set B(0) = {x`}
and G0 = True (namely the event of probability 1).

Claim 7.2 Assuming the availability of ’fresh copies’ as required by the algorithm at step
1 of every round, then ∀i, Prob(Gi | Gi−1) ≥ 1− 2−(i+4).

Proof: For i = 1 let B = B(1) be the block that contains `. At step 1 of round 1 every
processor in B knows each bit of B with error probability 2ε ≤ 2−64 (the factor 2 here is
due to the fact that it is not the bit itself that is being broadcast, rather it is a ’fresh-copy’
of it). Hence by the union bound, ` is known to be the winner for B by all processors in B
with probability at least 1− b2

1 · 2−64 = 1− 2−40.

For general i, at step 1 of the round a fresh copy of x` is broadcast by bi−1 processors
in B(i−1) (which by the conditioning know `). Thus any processor which hears this and
takes the majority of the results, knows that the value that is being broadcast by processors
in B(i−1) is 1 with error probability at most 2−bi−1 . For any other block, B ⊆ B(i), B 6=
B(i−1), that contains indices smaller than `, the value of xr for an arbitrary index r ∈ B is
being broadcast by each of the first bi−1 processors in B (this index might be different for
different processors), however, since ` is the minimal for which x` = 1 the true value of the
corresponding broadcast by any processor in B is 0. Since the fresh copy that is actually
being broadcast is correct with probability ε, the probability that any fixed processor in
B(i) will hear a 1 from the block B is less than 2−bi−1 . Hence, by the union bound, the
probability that there exists a processor in B(i) that does not know that the winner comes
from B(i−1) is at most bi · si2−bi−1 ≤ 2−(i+5), where the last inequality is by the third item
in Claim 7.1.

We conclude that in the beginning of step 4 of round i, all processors in B(i) know that
the winner of the round comes from B(i−1) with probability 1− 2−(i+5). Let us denote this
event as Di.

The identity of `, that is the log si−1 bits that are necessary to specify it inside B(i−1),
are being broadcast each by bi−1/(log si−1) processors at step 4. Thus, after taking majority,
the error per bit per receiver is at most 2−bi−1/(log si−1) ≤ 2−(i+5) · (si · log si−1)−1 (where
the last inequality is by the second item in Claim 7.1). By the union bound, conditioning
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on Di, every processor in B(i) knows the identity of ` (that is all the log si−1 bits specifying
it) correctly with error probability at most 2−(i+5).

We conclude that Prob(Gi| Gi−1) ≥ 1− 2−(i+4).

Summing for all i, Claim 7.2 immediately implies that with probability 15/16 all Gi’s
occur, which is the success probability of the protocol.

It is left to explain how in each round, in each block, fresh-copies of the block winner are
obtained for step 1 of the round. To do this note that at round i, bi−1 fresh copies are being
used in every block Bj of round i−1. Thus altogether at most 8n fresh copies are needed (as
sum is less than the total complexity). We thus use 8n helpers to supply those fresh copies.
Each helper is designated to a certain block in a certain round and it will just broadcast
once, one bit from its collection of fresh copies. We begin the protocol with round 0 in which
each processor broadcasts its value. Thus each helper has one independent fresh copy of
each variable. We will need to make sure that the bi−1 helpers that are designated to a block
Bj ∈ B know the winner of the block too. For each particular block this happens with the
same probability that the processors that are members of the block know the correct unique
winner. Thus the total error will just double and become at most 1/8. Finally, simulating
the 8n helpers is done exactly as described in the protocol of Theorem 2.

We note that the protocol of Theorem 11 does not actually computes the OR, rather it
ends with the smallest ` for which x` = 1 (if such exists). This is somewhat similar to the
situation in the protocol of Theorem 3 after the identity of ` is made known to everybody.
To make the value of x`, which is the value of the OR, known to all processors, two final
rounds are used. In the first every processor broadcasts its value and then every processor
broadcasts the value it heard from P`. Finally, each processor takes the majority value it
hears in the final round as the result of the computation.

This obviously implies:

Corollary 7.1 There is a fault tolerant protocol that computes ORn using O(log∗ n) rounds
and O(n) total complexity.

8 Further work and open problems

We have demonstrated that via fault tolerant decision tree algorithms we can construct fault
tolerant broadcasts protocols for many functions, including symmetric and non-symmetric
examples. The recent result of [13] solves the ’whole-bit’ problem of Gallager. However, we
still don’t know the complete answer to Gallager’s question, namely, whether there is any
Boolean function that requires super linear number of broadcasts. The natural candidate
for such function is the parity of all bits. It should be noted though, that [13] showed
that the parity, as well as any symmetric function, can be computed in the corresponding
statistical decision tree model in linear number of broadcasts.

We use here extensively a reduction to algorithms for the noisy decision tree model. It
should be noted that the noisy decision tree model is ‘much weaker’ than the broadcast
model; Feige et al. [7] proved a lower bound of Ω(n log n) queries for the majority (and
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parity), while by Gallager those functions can be computed using O(n log log n) broadcasts.

Concerning noisy decision trees; it would be nice to come up with other families of
Boolean functions for which efficient (linear query complexity) algorithms exist, or ulti-
mately give a characterization of such functions in terms of other natural parameters.

Finally, nearly everything about computing the OR function in both the noisy decision
tree model and the broadcast model is known. There is still though one piece of information
missing: Is it possible to compute the OR in O(1) rounds and total complexity O(n) in the
broadcast model?
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[2] H. Buhrman, I. Newman H. Röhrig, R. de Wolf, Robust Polynomials and Quantum
Algorithms, special issue of STACS05 in Journal of Theory of Computing Systems,
40(4), 379-395, 2007.

[3] R. L. Dobrushin and S. I. Ortyukov. Upper bounds for the redundancy of self-correcting
arrangements of unreliable functions, Problems of Information Transmission, 13, 203-
218, 1977.

[4] A. El Gamal, Open problems presented at the 1984 workshop on Specific Problems in
Communication and Computation sponsored by Bell Communication Research.

[5] W. Evans and N. Pippenger. Average-Case Lower Bounds for Noisy Boolean Decision
Trees, SIAM Journal on Computing 28(2), 433-446, 1999.

[6] U. Feige and J. Killian. Finding OR in noisy broadcast network, IPL 73, 69-75, 2000.

[7] U. Feige, P. Raghavan, D. Peleg, E. Upfal, Computing with Noisy Information, SIAM
J. Comput. 23(5):1001-1018, 1994.
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