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Abstract

We introduce a new approach to three important problems in ray tracing:
antialiasing, distributed light sources, and fuzzy reflections of lights and other
surfaces. For antialiasing, our approach combines the quality of supersampling
with the advantages of adaptive supersampling. In adaptive supersampling, the
decision to partition a ray is taken in image-space, which means that small or
thin objects may be missed entirely. This is particularly problematic in
animation, where the intensity of such objects may appear to vary. Our
approach is based on considering pyramidal rays (pyrays) formed by the
viewpoint and the pixel. We test the proximity of a pyray to the boundary of an
object, and if it is close (or marginal), the pyray splits into 4 sub-pyrays; this
continues recursively with each marginal sub-pyray until the estimated change
in pixel intensity is sufficiently small.

The same idea also solves the problem of soft shadows from distributed light
sources, which can be calculated to any required precision. Our approach also
enables a method of defocusing reflected pyrays, thereby producing realistic
fuzzy reflections of light sources and other objects. An interesting byproduct of
our method is a substantial speedup over regular supersampling even when all
pixels are supersampled. Our algorithm was implemented on polygonal and
circular objects, and produced images comparable in quality to stochastic
sampling, but with greatly reduced run times.

Keywords: Computer graphics; picture/image generation; three-dimensional
graphics and realism; antialiasing; distributed light sources; fuzzy reflections;
penumbra; object-space; ray tracing; stochastic sampling; adaptive;
supersampling.

1. Introduction

Ray tracing has been one of the foremost methods for displaying complex
images [1]. Its chief advantages are its ability to handle many different shading
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models, complex reflections, refractions, and many different object types.
Some disadvantages we will address are slowness, aliasing problems and
difficulties with distributed light sources (which are problematic for other
techniques as well). Another problem is that ray tracing by itself does not
produce a complete solution to the rendering equation [2,3], but even so, it is
used by some of the more complex techniques as an essential step [3,4,5].

Most approaches to antialiasing can be considered image-space, since it is
essentially the image-space that determines if and where extra rays have to be
cast. We informally call an approach object-space if decisions regarding extra
rays are based on information obtained during the ray-object intersections.
Whitted's method [6] calls for a sufficiently large bounding volume to surround
small objects, so that rays intersecting it will be subdivided. This component of
the algorithm is object-space dependent, though the rest is not. Beam tracing
[7] is an object-space approach because all calculations on beams are done in
object-space. More recently, there have appeared two new object-space
approaches to antialiasing [8,9].

Another difficult problem for ray tracing (and other techniques) is distributed
light sources. The standard way to calculate shadows is by tracing a shadow
ray to a point light source, but this does not extend easily to distributed light
sources. Beam tracing can handle such sources, but it is restricted to polygonal
environments. Cone tracing can handle spherical light sources, but these are
different from distributed sources because they illuminate with the same
intensity in all directions. Furthermore, as shall be explained later, shadow
calculations with cone tracing can be inaccurate. Stochastic sampling [10]
handles the problem in a very time-consuming manner by distributing many
rays across the light source. Other approaches (discussed in Section 2) are also
time-consuming.

Specular reflections from point light sources are handled by standard ray
tracing in an ideal manner - at least from the algorithmic, if not the physical,
point of view. However, distributed light sources are problematic. Furthermore,
real-life scenes contain fuzzy reflections not only of light sources, but of other
reflected objects, and the problem is to introduce fuzziness into such
reflections. This fuzziness varies with the angle of incidence and the surface
characteristics, and current approaches are very time-consuming.

In this paper, a new object-space approach to the problems of antialiasing,
distributed light sources and fuzzy reflections is presented. We call this method
ASOS (adaptive supersampling in object-space). The general flavor is that of
Whitted's adaptive supersampling, with the difference being that decisions to
subdivide are taken in object-space. Pyramidal rays are traced through the
scene, and when such a ray is close to an object boundary, it is subdivided. Ray
subdivision is also used for antialiasing shadows and texture maps. This
approach offers the quality of supersampling with the advantages of adaptive
supersampling (only areas of high frequency information are supersampled).
Furthermore, as will be explained in subsection 2.3, our method eliminates a
problem that is inherent with Whitted's object-space component of adaptive
supersampling.
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Our technique also solves the problem of penumbrae from distributed light
sources, producing accurate shadows. All intensity and shadow computations
can be carried out to any user-prescribed degree of accuracy. This is extremely
useful for animation, where small or thin objects must not only be detected,
but their area should be estimated correctly to prevent flashing or pulsating.
The same holds for small or thin shadows, holes, or gaps between objects. Also,
our method yields a simple solution to the problem of fuzzy reflections of lights
and other objects, with the amount of fuzziness depending on the incidence
angle and wavelength. As an added byproduct, our data structures and
algorithms provide a substantial speedup over regular supersampling even
when all pixels are supersampled, so our approach can also be viewed as a
useful acceleration technique.

To place our work in proper historical perspective, a few notes are in order. In
[6], Whitted writes: "...A better method, currently being investigated, considers
volumes defined by each set of four corner rays and applies a containment test
for each volume." In [11], Amanatides writes in a footnote that Whitted
abandoned the pyramidal ray approach due to the complex calculations that
are involved. This paper may be viewed as an implementation of Whitted's
idea, carried out with adaptive supersampling in object space as a solution to
the problem of complex calculations, as well as to the problem of fuzzy
reflections. We also use circular cones as an aid in detecting the proximity of a
pyramidal ray to an object. Solving the problems of antialiasing, distributed
light sources, etc., involves computations that require integration over finite
solid angles. This is done typically by point sampling, but the convergence is
slow. Our method may be viewed as a more effective adaptive integration
technique.

Comparisons between rendering techniques are usually done on the basis of
image quality and speed. ASOS is a new ray tracing technique that produces
images comparable in quality with stochastic sampling (without refractions),
but at times that are usually smaller by an order of magnitude (when compared
to the standard implementation). We do not give a complete solution to the
rendering equation [2,3,4,5], nor do we deal with special acceleration
techniques for very complex scenes, such as [12,13]. However, other
approaches that use ray tracing as an essential step could take advantage of
our technique. A preliminary version of this research has appeared in [14], and
many of the technical details can be found in [15,16].

The rest of the paper is organized as follows: Section 2 presents an overview of
some of the current methods, together with their main advantages and
disadvantages. Section 3 describes our technique of adaptive supersampling in
object-space. Section 4 describes how shadows from point light sources are
antialiased and how accurate penumbrae from distributed light sources may be
calculated. Section 5 explains our defocusing method for producing fuzzy
(specular) reflections of lights and other surfaces. Section 6 discusses some
implementation and efficiency issues. Section 7 presents some results obtained
with this technique and compares them with stochastic sampling. Section 8
concludes with a discussion and a summary of further applications.
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2. Background

There have been three main approaches to the aliasing problem. One is to
generate a fixed number of extra rays for each pixel. Examples of this are
simple averaging and supersampling. A logical extension to the first approach
is to adaptively generate more rays for each pixel until some criterion is met.
Examples are adaptive supersampling [6] and stochastic sampling [17,18,19].
See [1,20,21] for comprehensive discussions of these topics. The last approach
has been to extend the definition of a ray - either to a different object or to
allow more than one ray to be traced at a time. Several examples of this are
discussed below.

2.1 Averaging

The simplest way to correct for aliasing is a simple averaging, such as
replacing each pixel value by a (weighted) average of its neighbours. Another
approach is to cast rays at the corners of pixels and to take their average as
the pixel values. The disadvantage of these methods is that small objects may
be missed, and some jagged effects may still be seen. These methods are
collectively referred to as post processing by using a low pass filter.

2.2 Supersampling

Supersampling is done by sampling the image at a higher resolution than the
screen, typically 4 to 16 rays per pixel. This method yields good results, but at
a very high price in computation time. In most parts of an image, just one ray
per pixel (corner) is sufficient.

2.3 Adaptive Supersampling

This method, due to Whitted [6], consists of casting rays through the corners of
a pixel. If the 4 values do not differ from each other by much, their average is
used for the pixel. If they do differ, more rays are cast - through the center of
the pixel and the centers of the pixel edges. This subdivision continues as
needed until some preset limit on the number of subdivisions is reached.

This method has a potential problem with small objects, which may escape
undetected. Whitted corrects this by surrounding each small object with a
bounding sphere sufficiently large so that if the object projection intersects a
pixel, then at least one of the 4 rays will intersect the sphere. When this
happens, the pixel is subdivided as before. We refer to this component of the
algorithm as being done in object-space, because the decision to subdivide is
based on information in object-space.

Some problems inherent to this approach have no solution: One cannot detect
and antialias small or thin shadows (when the shadow is horizontal or vertical),
and small or thin holes or gaps between objects. Even if they are detected and
a single image looks good, animation sequences are problematic. Another
problem is that rays reflected off a curved surface may still miss the bounding
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sphere of a small object.

2.4 Stochastic Sampling

Yellot [22] noticed that using an irregular sampling pattern caused some
sampling effects to be converted to a particular form of noise which appears
uniform to a human observer. Cook, Porter and Carpenter [17] introduced the
technique of distributed ray tracing. Their method consists of evaluating pixel
values by stochastically supersampling [10] and distributing the rays across
those domains that need to made "fuzzy". This method can be used not only to
correct for antialiasing, but also to produce other effects such as penumbrae,
blurred reflections, motion blur, and simulation of depth-of-field effects. On the
pixel size that he worked with, Cook reached the conclusion that some 16 rays
per pixel produced a reasonable noise. With stochastic sampling, aliasing
artifacts are replaced by noise, to produce a pleasing picture while requiring
less sampling than would be necessary with a regular sampling pattern. Lee et
al. [23] analyzed the relationship between the number of samples per pixel and
the quality of the estimate obtained, and presented an optimized algorithm for
antialiasing, penumbrae, fuzzy reflections, wavelength sampling, and more.

2.5 Adaptive Stochastic Sampling

Dippé and Wold [18] studied the use of noise-reducing filters to improve the
quality of the image at a given sampling rate, and applied his technique to
antialiasing ray traced images. The filter width is controlled adaptively, but this
is based on image-space data. Mitchell [19] used adaptive supersampling
based on results obtained in image-space. He used Poisson-disk sampling, and
introduced a scanline algorithm to generate the sampling pattern in an
efficient manner. Painter and Sloan [24] also used adaptive supersampling
based on results in image-space, but their procedure started from above the
pixel level. They used both a confidence interval test (to determine when
supersampling should be stopped), and a coverage condition to ensure that all
objects larger than a pixel are sampled.

2.6 Beam Tracing

In beam tracing [7], an initial beam, formed by the viewpoint and the view
plane, is traced through the image. When this beam intersects a surface, the
exact portion of the beam that continues past a polygon (if any) is calculated
using a clipping algorithm such as the Weiler-Atherton algorithm [25]. The
resulting beam continues to the next object, while the intersection is reflected
as another beam. This method is completely accurate but it is limited to
polygonal scenes. The original paper discusses extensions to directional light
sources, but not distributed ones. However, these can be handled in principle
by tracing a beam from a surface point towards such a source.

2.7 Cone Tracing

In cone tracing [11], a ray is replaced by a cone surrounding the viewpoint and
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the pixel. When a cone intersects the boundary of an object, the fraction of the
occluded cone is calculated, and the cone is then continued past the object
with a suitably reduced intensity. Although this method produces reasonable
antialiasing, soft shadows, and fuzzy reflections, it is not accurate, because it
does not account for the fact that a cone may be blocked in various
orientations. For example, suppose a cone is 50% blocked by one surface and
then 50% blocked by a further surface. In reality, the two surfaces may be
directly behind one another (totaling only 50% blockage), or they may be
occluding the entire cone; cone tracing does not distinguish between these
cases.

Another major distinction between cone tracing and our approach to soft
shadows is that in cone tracing, the light source is considered as a sphere with
equal intensity towards all directions (unless shadowed), while our technique
also handles distributed light sources such as arbitrarily-shaped lighted
polygons whose intensity varies with the angle of incidence, just as in radiosity.

2.8 Covers

Covers [8] is an extension of Whitted's bounding spheres. Objects are assumed
to be surrounded by some covers of a sufficient thickness to ensure that they
are intersected by a ray from at least one pixel. Thus, when a ray intersects a
cover, it is in proximity to the boundary of an object. In this case, the pixel's
intensity is taken as a weighted average of the two intensities. This is an
object-space technique which solves some problems, but creates others. For
example, covers must be quite large if one is to account for reflected rays,
particularly for rays reflected off a curved surface. As in cone-tracing, this
method cannot distinguish between different orientations of objects in a ray's
path. Another potential problem with this method occurs with thin or small
objects: since the weights are based only on the distance to the closest edge,
such an object will not accurately contribute its weight to the pixel value.
Shadows are handled by considering their edges on the surface, hence the
method is inherently limited to point light sources.

2.9 Ray Bound Tracing

In ray bound tracing [9], a ray bound surrounding several similar rays is used
to detect the proximity of the rays to the boundary of an object. When this
happens, the pixel is supersampled at some predetermined value (16 samples
were used in their sample images). The drawback of a predetermined
supersampling rate is that many samples must be used to capture very small or
thin objects. Compared to adaptive approaches, the number of extra samples
can be very high. The method is limited to point light sources and it is not clear
if it can be extended to distributed sources.

2.10 Pencil Tracing

Shinya et al. [26] define a pencil as a bundle of rays which are close to a
central "axial" ray. The rays in a pencil are called "paraxial", and each can be
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represented in the pencil coordinate system as a 4-dimensional vector. Their
approach is based on the premise that at an object surface, each paraxial ray
undergoes a transformation which can be approximated by a linear
transformation, represented by a 4x4 "system" matrix. This approach does not
work for pencils which intersect object boundaries or edges, where regular ray
tracing is used. The paper uses pencil tracing to create images containing
curved surfaces, perfect reflections, refractions and point light sources. There
doesn't seem to be a direct use of this method for distributed light sources. As
for fuzzy reflections, it is far from clear that such reflections can be properly
approximated by a linear transformation. The paper deals only with point light
sources and parallel rays (produced by a point source at infinity).

2.11 Global Illumination Methods

Several papers present solution methods for the global illumination problem
[27,28,2,3,4,5]. They handle the problem of antialiasing, penumbrae from
distributed light sources and fuzzy reflections. They are very time-consuming,
and some of them involve two phases: one is view-independent (such as
radiosity and its extensions), and the other is view-dependent. Those methods
that involve a view-dependent stage use various flavors of ray tracing, some of
which may be speeded up by our approach.

2.12 Coverage Masks

Fiume [29] presents an efficient method of antialiasing by approximating the
coverage of a pixel. The method uses coverage masks and convolution tables to
achieve fast area sampling. However, the technique is non-adaptive: it uses a
fixed subdivision of a pixel, even in regions of low frequency.

3. Adaptive Supersampling in Object-space

Our method can be viewed as an extension of Whitted's adaptive
supersampling approach carried out in object-space. The mathematical ray
(semi-infinite line) is viewed as if surrounded by a pyramidal ray formed by the
viewpoint and the original pixel. This pyramidal ray is mathematically also a
cone, but to distinguish it from a circular cone we call it a pyray.

In standard ray tracing, a ray either meets an object or it doesn't. When a
pyray and an object are involved there are three possible outcomes: the pyray
completely intersects the object, or it completely misses it, or it is marginal
(i.e., part of the pyray meets the object and part of it misses it). When a pyray
is marginal with respect to an object, we split it up into 4 sub-pyrays, and the
procedure is repeated for each sub-pyray. Figure 1 shows a pyramidal ray
subdivided into 4 sub-pyrays. This process continues to any desired accuracy,
giving the user an easily controlled tradeoff between image quality and
processing time. Finally, when a pyray (or sub-pyray) has to return a value
from the surface, it is sampled by its center, or, in some cases by a point
jittered from the center.
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Figure 1: A pyramidal ray subdivided into 4.

As an aid in detecting whether a pyray is marginal, we surround it by a circular
cone and detect intersections using the cone. We consider the pyray to be
marginal if the enclosing cone intersects the object. This will cause some
pyrays to be split even if no object boundary intersects it, but there is no loss
of accuracy involved. The slight increase in the number of marginal pyrays is
more than offset by the simplicity (and time-saving) of testing the proximity of
a circular cone to an object. Note that we are not doing cone tracing because
only points that are strictly inside the pyray are used as sample points; the
cone is merely used as an aid to deciding marginality.

We use the term ray in its classical sense to refer to the line going from the
viewpoint through the center of the pixel. We sometimes also refer to this ray
as the axis of the pyray. When a pyray splits into four, the central
(mathematical) rays of the sub-pyrays are called subrays of the original ray. For
convenience, the original pyray is called a 0-ray, its sub-pyrays are called
1-rays, and so on. The decision on whether a sub-pyray should be subdivided is
done by estimating an upper bound on the intensity change that could be
produced by subdividing. If the estimated change is less than some
user-supplied value , no subdivisions are done. The parameter  controls the
tradeoff between image quality and processing time. It allows us to guarantee
the capture of arbitrarily small (or narrow) objects simply by making 
sufficiently small.

At the lowest level of subdivision, we no longer consider the sub-pyrays, but
just the regular subrays, as in ordinary ray tracing. At this level, we can also
jitter the subrays, so that any aliasing artifacts that are left are replaced by
noise which seems featureless. This can be done because at that level we no
longer need the symmetry required for subdivision.

Our technique can be easily extended to support a filter that is larger than a
pixel: We can simply surround each pixel with a larger square and cast the
pyray through that square instead of the pixel.
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3.1 Subdivision Stopping Criterion

In this section we derive a simple mathematical upper bound on the change
that would be produced in pixel intensity if marginal sub-pyrays are
subdivided. This bound is then used in our stopping criterion.

Let us assume that a 0-ray is marginal with respect to an object. The algorithm
then does a subdivision, resulting in 4 1-rays. In general, assume that we have
divided the marginal rays up to a level of K, so we now have to determine
which (if any) of the K-rays have to be subdivided. Clearly, only the marginal
K-rays are candidates for subdivision. Let M be the total number of marginal
K-rays, IN the number of marginal K-rays whose axis hits the object, and
OUT=M-IN. Now denote L=max(IN, OUT), and we assume for the sake of
discussion that L=IN.

There are two alternatives in our scheme: to subdivide all the M marginal rays,
or not to subdivide any of them. We can calculate the maximum possible
change in pixel intensity that would be produced by subdividing. If the L K-rays
that are in are subdivided, it is possible that the (K+1)-subrays of each of them
will all be out (e.g., in the case of a thin object). This could be balanced by
some of the M-L out K-rays spawning some (K+1)-subrays that are in, but in

the worst case, this will not happen. The area of every K-ray is 1/22K, so the

maximum area that could be affected by the change is L/22K. If we assume
intensities in the range of 0 to 1, then we see that the maximum change in the

pixel intensity is again just L/22K. This leads us to the following decision
criterion:

If L/22K <=  then stop subdividing (the marginal rays).

The above comparison can be expressed in the form L <= 22K . When we go

from K to K+1, 22K  increases by 4. Note that we should have some maximum
allowable depth of subdivision so that the program does not continue
subdividing in case of pathological situations. We can construct an object so
that the center of the initial 0-ray will be in, then all the 1-subrays will be out,
then all the 2-subrays will be in again, and so on. We denote the maximum level
by MAX with MAX=4 sufficient for most practical purposes, since this allows
up to 256 4-rays or a 16x16 supersample.

Figure 2 shows an example with =1/16, so 22K  = 22K-4.

K=1 M=3, IN=0, OUT=3 so L=3. 22K-4 = 1/4 < L so we subdivide the
marginal 1-rays.

K=2 M=5, IN=0, OUT=5, so L=5. 22K-4 = 1 < L so we subdivide the
marginal 2-rays.

K=3 M=12, IN=4, OUT=8, so L=8. 22K-4 = 4 < L so we subdivide the
marginal 3-rays
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K=4 M=28, IN=13, OUT=15, so L=15. Now 22K-4 = 16 > L so we stop at
this stage.

Figure 2: Intersection of thin object and pyray, showing adaptive subdivision
at levels 1 to 4.

It is interesting to note that in this example, the difference between the
approximated area of the object (14 4-rays) and the actual area is just 0.63% of
the entire area covered by the original pixel.

Although our stopping criterion may appear similar to the well-known adaptive
tree-depth control of ray tracing [1], it is in reality very different. In adaptive
tree-depth control, a decision with regard to every node of the tree is made
based only on the estimated contribution of that single node. However, it is
possible that several nodes will each be determined as making a small
contribution, but collectively, their contribution could be significant. In
contrast, our stopping criterion considers the total change in pixel intensity
that would be produced by all the candidates for subdivision. Hence, our
results are guaranteed to be accurate to within the user-supplied tolerance .

3.2 Textured Surfaces

Textured surfaces present a different problem: We may need to sample a patch
even if it is not marginal, otherwise we may get aliasing effects. Our solution to
this is simply to force a pyray (or sub-pyray) that is entirely inside a textured
surface to subdivide up to some user-prescribed level. This gives us yet
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another user-controlled parameter that provides a tradeoff between image
quality and processing time.

We define the TR (texture resolution) as the resolution to which a non-marginal
pyray subdivides when it hits a textured-mapped surface. For example, TR=3
means that each such pyray samples the texture map 9 times by subdividing
into a 3x3 mesh. Within each small square, we sample the texture by a point
jittered from the center, in order to correct any aliasing that is left.

4. Shadows

In this section we discuss the handling of shadows from various sources,
including penumbrae and the problem of antialiasing. In all the following,
when we consider pyrays intersecting a surface, we assume that it intersects it
completely - otherwise the pyray would have split and the pyray under
consideration is actually a sub-pyray.

4.1 Shadows from Point Light Sources

In regular ray tracing, when a ray hits a surface, a shadow ray is traced
towards the point light source, and depending on whether the shadow ray hits
an object, it is determined whether the surface point is in shadow or not. The
problem with this approach is that shadows can become aliased. Our approach
provides a simple solution to this problem: When a pyray intersects a surface,
it creates a surface patch with four corners. We construct a shadow pyray by
taking the light (which is a point) as the source and having the four lines
connecting the light to the patch's corners as the shadow pyray's corners. The
axis of the pyray is drawn from the light to the point of intersection of the
surface and the original pyray's axis. Figure 3 illustrates this construction.

Figure 3: Generating accurate shadows from a point light source by casting a
shadow pyray.
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We now handle the shadow pyray similarly to a regular pyray: it either
completely misses all objects on the way to the patch (in which case the patch
is completely lit), or it is completely obstructed by some surface (in which case
the patch is in shadow), or it is marginal to some object. In the last case, the
shadow pyray splits into four sub-pyrays, and the process continues with the
sub-pyrays. As in the case of a regular pyray, the decision to split or not to split
the marginal sub-pyrays is based on the same criterion as before. Subdivision
can continue down any predetermined level (such as MAX or another
user-supplied value).

The intensity of the light from the source is taken as the maximal intensity
multiplied by the fraction of the areas of the shadow sub-pyrays that reach the
patch. This shadow calculation is accurate to the user-prescribed . Strictly
speaking, it should be noted that when the surface is curved, the shadow
calculation described above cannot be completely accurate, because the
shadow pyray may not intersect the surface at exactly the same patch.

A special case occurs when the original pyray splits into sub-pyrays due to
marginality. Consider only those sub-pyrays that do not split any further (either
because they are entirely in, entirely out, or have stopped splitting due to the
stopping criterion or the level MAX). Those sub-pyrays that are entirely in the
surface are treated as explained above, and those that are entirely outside are
ignored. Consider now a sub-pyray which is marginal: Recall that in this case, a
sample point in the patch (the center or a point jittered from the center) is
used to sample the surface: if the sample point is in the surface, the entire
patch is considered to be in the surface. In this case, the shadow is determined
simply by casting a shadow ray from the sample point towards the light source.
Since the patch is small and the shadow value of the original pyray is
determined by all its sub-pyrays, we get an antialiased shadow also at the
boundaries of objects.

4.2 Distributed Light Sources

There are two separate issues here: one is the creation of penumbrae (partial
or "soft" shadows) from distributed sources, and another is the problem of
antialiasing. In most cases the partial shadow itself does a sufficiently good job
of antialiasing the shadow, but there are cases when it does not. We first
discuss the creation of penumbrae under the simplifying assumption that we
are only concerned with the shadow intensity at the exact point where the
pyray's axis hits a surface.

Assume first that the source is a rectangle. Then, from the surface point that
needs to be lit, create a shadow pyray with bounding rays aimed at the four
corners of the rectangle. This is illustrated in Figure 4. We need to find the
fraction of the shadow pyray that reaches the light without being obstructed.
Again, this is done as described previously for a regular pyray, with a shadow
pyray splitting when it is marginal with respect to an object. The shadow
sub-pyrays (and their areas) that reach the light source determine the fraction
of light that illuminates the surface point. If the light source is not rectangular,
we first surround it by a bounding rectangle, and proceed as above. Next, we
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consider only the shadow sub-pyrays that hit (or are marginal to) the bounding
rectangle. Each of these is either completely inside the light source itself,
completely out, or marginal to the light. The shadow sub-pyrays that are
marginal to the light are split according to the same principles.

Figure 4: Shadow pyray from a surface point to a distributed light source.

The intensity of the light that we assign to each shadow sub-pyray hitting the
light source is taken as IAcos , where I is the intensity of the source per unit
area (assumed constant for the source), A is the area of the source subtended
by the shadow sub-pyray, and  is the angle between the normal to the source
and the axis of the shadow sub-pyray. This is the effective illumination for that
particular shadow sub-pyray, since Acos  is the approximate area of the
projection of the subtended area on a plane perpendicular to the shadow
sub-pyray. In radiosity techniques, this is one way of approximating the form
factors [20]. The intensity is also attenuated by the distance in the usual way
[20].

Spherical light sources may also be simulated by simply omitting the cos
factor, which gives a disk perpendicular to the line of sight. From the point to
be lit, a shadow pyray towards the center of the sphere is created with
bounding rays defined by the radius of the sphere. The process would then
proceed as above to find the percentage of light that makes it to the point.

What we have described above is correct only for a single point on the surface.
We can use the single point as a sample for the shadow effecting the entire
pixel, but there are cases where it could lead to aliasing errors. Figure 14
demonstrates this problem on the gazebo in the extreme right corner where
the pyray axis makes a very small angle with the surface. The centers of
adjacent pyrays are far apart on the surface, and the intersections of their
respective shadow pyrays with other objects may be very different, resulting in
sharp changes in shadow intensities. The inset in the figure is a 4x4 blow-up of
the problem. Five solutions to this problem are outlined below:

4.3 Forced Subdivision
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This method is the one we use with texture-mapped surfaces - see subsection
3.2. Each pyray is forced to subdivide up to the user-supplied level TR (texture
resolution). The effects of different values of TR can be seen in the insets of
Figurs 14 and 15.

4.3.1 Supersampling

Instead of creating just one shadow pyray from the center of the patch, we can
choose more sample points within the patch, and take the shadow as the
average of the results. We can also jitter the sample points. The user can vary
the number of sample points and there is an obvious tradeoff between
accuracy and running time.

4.3.2 Extending the shadow pyray

The shadow pyray described above emanates from a surface point and its axis
is a line joining the surface point and the center of the light source (the
intersection of its diagonals). Now instead of taking this as the shadow pyray,
we move the source of the pyray behind the surface. Now the shadow pyray
intersects the surface in a patch, which we call the shadow patch. This idea is
illustrated in Figure 5, and it is similar to the idea of defocusing (see next
section). The original patch and the shadow patch obviously overlap, but they
are usually not identical.

Figure 5: Extending the shadow pyray for improved sampling.

One problem that remains to be resolved with this approach is how large
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should we make the shadow patch? We want to make the shadow patch as
large as possible so that it will sample the original patch as best as possible,
but the shadow patch should not extend beyond the original patch, or we might
get false shadows. Geometrically, this problem is identical to the following:
Consider the patch as a screen and the pyray's origin as the viewpoint. Our
problem now is to move the viewpoint until the projection of the light source
(towards the viewpoint) is maximal and still contained in the screen. Note that
if the projection of the light source on the patch is small, we may have to move
the source of the shadow pyray behind the light.

Our current implementation uses this method (except for textured surfaces,
where we use forced subdivision).

4.3.3 Extension and subdivision

This is a combination of two previous methods: we subdivide the original patch
into sub-patches, and for every sub-patch we create an extended shadow pyray
as described above. Clearly, this method requires less subdivisions than the
simple subdivision approach, and the results are more accurate. The
subdivisions can be done to any user-prescribed level.

4.3.4 Extension and adaptive subdivision

This method is the most consistent with our adaptive supersampling approach,
but it involves some initial extra steps which may be time-consuming. We
assume that the light is a rectangle - otherwise we surround it by a rectangle
and handle the shadow (sub-)pyrays as described above. The first step is to
project the light rectangle onto the same surface as the patch. This projection
is done parallel to the line from the patch's center to the light's center. We then
check to ensure that the entire patch lies inside this projection (it is sufficient
to check that the patch's corners are inside). If it is not completely inside, we
subdivide the patch into four and proceed with every sub-patch. In most cases,
the patch will be inside the light's projection.

Assume now that we have a surface patch (or sub-patch) that is entirely inside
the light's projection. We create a shadow pyray whose axis is the line joining
the centers of the patch and the light, and whose source is so far behind the
patch that the entire patch is inside the shadow ray (the corners of the shadow
pyrays are aimed at the light's corners). We now trace the shadow pyray, with
the patch as the first polygon, but we only trace the part of the shadow pyray
that is inside the patch. Clearly, the shadow pyray will subdivide along the
boundary of the patch. Another way of looking at it is as if the shadow pyray
was a regular pyray and the patch was a hole in the surface. The shadow
sub-pyrays that are inside the patch are traced towards the light, and the
marginal ones are subdivided up to the  accuracy or up to the MAX level.

To increase the efficiency of the above method, the actual order of tracing the
shadow pyray is different. The shadow pyray at first ignores the patch in order
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to create the list of objects that it hits. This list is passed on to its shadow
sub-pyrays and eliminates many objects from consideration while tracing the
shadow sub-pyrays (see section 6).

5. Reflections

Sharp reflections of a pyray off a polygonal surface are straightfoward. In the
next two subsections we deal with fuzzy or blurred reflections and with the
problem of curved surfaces.

5.1 Blurred Reflections

Regular ray tracing handles the problem of fuzzy (or specular) reflection of a
point light source very well. However, fuzzy reflections of other objects and
distributed light sources require the more sophisticated methods outlined in
Section 2. This anomaly is clearly seen in the early ray traced images:
reflections of point light sources are fuzzy, whereas reflections of other objects
are sharp. Both Phong's model and the Torrance-Sparrow model [20] assume
that light sources are points, and as such, it is difficult to use them for
distributed light sources. In our approach, all reflections (of lights and other
objects) are treated in a similar manner. Stochastic sampling [10,23] solves the
same problem by distributing the reflected rays, but this requires a high
degree of supersampling.

Another difficulty is the well-known phenomenon that most surfaces reflect in a
manner that is dependent on the angle of incidence. Figure 19 shows this: a
house is seen reflected from a surface, and the viewpoint is assumed to be
close to the surface. The bottom part of the house is almost perfectly reflected,
while the top part is very fuzzy. As explained in [27], the difference in fuzziness
is due mainly to the difference in the viewing angle. Another contributing
factor is the dependence of the fuzziness on the wavelength.

Our model of a solid reflected pyray allows a very simple solution to all of the
above problems. Reflections of all types, and not only light sources, can be
made fuzzy. Furthermore, the degree of fuzziness can depend on the angle of
incidence and the wavelength, and the user can specify this dependency. The
drawback of our simple method is that it is not based on a physical model, and
hence requires experimentation and tuning to give accurate results.

Our solution is best explained by examining the geometry of a reflected pyray,
as in Figure 6. The pyray, if reflected from a perfect mirror, behaves
geometrically as if it emanated from a point which is a reflection of the pyray's
source. To introduce fuzziness into this scheme, we defocus the reflected pyray
by shifting the reflected source forward along the axis of the pyray. The effect
is that the reflected pyray subtends a wider angle, and thus adjacent pyrays
overlap after the reflection. This overlap of adjacent pyrays causes points to be
reflected in more than one pyray, and this produces an overall fuzzy
appearance.
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Figure 6: Defocusing a reflected pyray to produce blurred reflections.

In Figure 6, we denote the angle of incidence by , the angle of the pyray by ,
and the angle of the foreshortened pyray by . We also denote the ratio of the
distances between the two sources of the pyrays and the surface by DFR (the
defocusing ratio); in Figure 6, DFR=a/b. Note that this ratio is always between
0 and 1. In order to model the dependence of the fuzziness on , our general
model calls for the DFR to be some function of , depending on the surface.
One simple function that suggests itself is to select a minimum and maximum
value for the DFR - call them DFRMIN and DFRMAX - where the minimum is
for  = 0°, and the maximum is for  = 90°. For other values of ,

DFR=DFRMIN+(DFRMAX-DFRMIN)sin( )N , where N is a parameter
controlling the rate at which the DFR varies.

The DFR is very easy to use in modeling the defocusing idea, but its value is
not a very good indication of the degree of fuzziness of the reflection. A more
natural measure for this fuzziness is simply the percentage increase of the
wider pyray angle over the original pyray angle, i.e., 100( - )/ . Figure 7 shows
plots of this percentage increase as a function of the incidence angle , for
DFRMIN=0.6, DFRMAX=0.95, =2°, and several values of N. Other values of
the parameters produce essentially similar graphs. Of course, a DFR close to
1.0 produces sharp reflections (small percentage increase of  over ).
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Figure 7: Percentage increase of angle of defocused pyray over original angle
of pyray (taken as 2°), plotted as a function of the incidence angle, for various

values of N, with DFRMIN=0.6 and DFRMAX=0.95.

Clearly, a lot of field work is called for to determine which values of the
parameters DFRMIN, DFRMAX and N best model the different types of
surfaces that occur in everyday environments. Table 1 is given as an aid in
choosing DFRMIN; it shows the percentage increase of the pyray angle for
different values of DFRMIN, for  = 0°.

DFRMIN 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

100( - )/ 890% 399% 233% 150% 100% 67% 43% 25% 11%

Table 1: Percentage Increase of Pyray Angle for Different Values of DFRMIN (
= 0°)

Another issue is that the fuzziness also depends on the wavelength [27]. This
can be easily incorporated into our model by selecting three different DFR's for
red, green and blue. Although it might appear that such a solution should take
three times as long to implement, that is not the case. By first doing the widest
pyray, its list of marginal objects (see next section) can be passed on to the
pyrays of the other two wavelengths, resulting in very considerable time
savings.

Most surfaces exhibit fuzziness that is not uniform (even for a constant angle
of incidence), due to the uneveness of the surface. This uneveness can also be
modeled by our defocusing method by first computing a DFR according to the
above model, and then perturbing this value according to some distribution
function. Similar effects were studied in [17,23], but we have not implemented
them in our present work.

5.2 Reflections Off Curved Surfaces

Our approach to antialiasing of curved surfaces is basically similar to that of
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polygons: When a pyray is marginal to a curved surface, it splits into
sub-pyrays, and the process continues until either the stopping criterion is
satisfied, or the level MAX is reached. The values of sub-pyrays that are still
marginal (but do not split further) are determined by a single sample point. In
the following discussion, "pyray" refers to an original pyray or a sub-pyray that
is not marginal and needs to be reflected from a curved surface.

Reflections of a pyray off a flat surface are simple, because the reflection of a
pyray is, geometrically, also a pyray. The problem is that of reflections off a
curved surface, such as a sphere: Firstly, the four reflected corners of the
pyrays no longer meet at a single point. Secondly, the reflection of the side of
the pyray is no longer planar but curved. And lastly, the reflection of the pyray
may now subtend such a wide angle that it is no longer manageable. We
propose four different solutions to these problems, each having its own
advantages and disadvantages.

5.2.1 Approximating the reflected pyray

In this approach, we approximate the reflected pyray provided its angle is not
too wide. Figure 8 illustrates this method. When a ray is reflected off a curved
surface, we consider the four rays, R1, R2, R3, R4, which are the reflections of
the bounding lines of the original pyray. Each of these four rays is defined by a
point on the surface and a direction vector. Since the reflection of the pyray is
not a pyray, we construct a pyray to approximate the reflection. Before doing
that, we check the maximal angle between opposite pairs of rays from R1-R4,
and if it is wider than some user-specified value, we subdivide the pyray. This
subdivision can continue up to the level MAX. At the level of MAX, we just
sample the sub-pyray by its axis (or by a jittered displacement of the axis). In
the following, we assume that the pyray we are dealing with is already narrow
enough not to be split.

Figure 8: A pyray reflected from a curved surface.

For the approximation, we need to determine a source and an axis, and this is
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done as follows: The source of the approximating pyray is taken as the point in
space such that the sum of the squares of its distances to R1-R4 is minimal.
The axis of the approximating pyray is now taken as originating from this
source and going through the point at which the axis of the original pyray hit
the surface. This ray is called R in Figure 8. The four corners of the
approximating pyray are taken as emanating from the source and passing
through the four points at which the corners of the original pyray hit the
surface. We now continue to trace with the approximating pyray, which can
also be defocused like a regular reflected pyray.

This technique is quite straightforward, but the required calculations can be
time-consuming to such an extent that another approach might be better.
Another problem is that the approximating pyray is still just an approximation,
and it may result in certain anomalies. For example, in some cases, the
approximations of adjacent reflections may overlap, and in other cases, such
approximations may miss certain volumes in space. Another problem is the
determination of the threshold angle: If it is too large, the anomalies might
show up as artifacts, and if it is too small, then we could be wasting time on
calculations which just end up with a decision to split the original pyray.

5.2.2 The tangent-plane method

This is the simplest solution. At the point where a pyray's axis hits the surface,
we reflect the pyray about the plane tangent to the surface at that point. This
plane is easily derived from the point of contact and the normal at that point.

The obvious problem with this approach is that adjacent pyrays will be
reflected in such a way that certain volumes between pyrays will be missed.
However, this problem can be remedied to some extent by defocusing the
pyrays as explained in the previous subsection.

It should also be noted that the images obtained by this approach cannot be
worse than those obtained when all curved surfaces are approximated by
polygonal meshes (a very common approach to rendering curved surfaces).
What we are doing here is, in effect, a local replacement of the curved surface
by a very small polygon, namely, the pyray's intersection with the tangent
plane. The advantage of this approach over an ordinary polygonal
approximation is that it is always done at image resolution, so rendering a
close-up view of a curved surface will never reveal any polygonal structure.

5.2.3 Curved reflections by supersampling

This solution takes more time than the previous one but is more accurate.
Whenever a pyray hits a curved surface, it splits up to some predetermined
maximal level, and we simply continue to trace each of the sub-pyrays
separately. For the sub-pyrays, their reflections off the curved surface are done
by the tangent-plane method outlined above. This approach ensures that the
scene will be sampled much more uniformly and with much smaller gaps than
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with the tangent-plane approach. Furthermore, if we want to do texture
mapping on the curved surface, we have to adopt this solution since we have
no other way of antialiasing the texture map.

5.2.4 Curved reflections by adaptive supersampling

This is a refinement of the previous method, and it is keeping with our
principle of adaptive supersampling. When a pyray is reflected off a curved
surface, we test the widest angle that is formed between R1-R4 (see Figure 8).
If that angle is greater than some user supplied threshold, we subdivide the
pyray into four sub-pyrays, and repeat the procedure with every sub-pyray. If
the angle is less than the threshold, the (sub-)pyray is reflected by the
tangent-plane method, and it can also be defocused in the regular way. The
subdivision can continue up to some user-specified maximal level.

6. Efficiency Considerations

In this section, we discuss several matters relating to efficiency.

6.1 Hit Lists

When a 0-ray is intersected with the scene, a list containing all of the objects it
hit or was marginal to is returned. Since a sub-pyray can only be marginal to
an object if its parent was marginal, the sub-pyray only has be intersected with
the hit list of its parent instead of the entire scene. This method considerably
speeds up the process, even when we subdivide all pyrays.

When a pyray is marginal to a polygon, it may be marginal to more than one
edge. Clearly, none of its sub-pyrays can be marginal to any other edges, so in
order to minimize computation time, the information about the marginal edges
can be passed from a pyray to its sub-pyrays. We can maintain a list of all the
edges of the polygon which are close to the pyray. When the sub-pyrays are
considered, we need only compare them with the edges on this list (and not all
edges of the polygon). Note, however, that the order in which a pyray
intersects some marginal surfaces is not necessarily identical with the ordering
for its sub-pyrays.

6.2 Proximity to One Edge

When a ray is in proximity to just one edge, we can improve our stopping
criterion by observing that for each marginal K-ray, at most half of it can switch
from in to out (or from out to in). The reason is that if the center of a K-ray is
in, then at most 2 of its (K+1)-subrays can be out. Therefore, in the decision
criterion, L can be replaced by L/2, giving us the modified criterion of:

If L <= 22K+1  then stop subdividing (the marginal rays).

This would, on the average, require many fewer subdivisions than the previous
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criterion, because in a polygonal object, almost all marginal rays would be in
proximity to just one edge.

Figure 9 shows a ray in proximity to just one edge. We use =1/16 as before. So

now we must compare L with 22K+1-4 = 22K-3.

K=1 M=3, IN=1, OUT=2 so L=2. 22K-3 = 1/2 < L so we subdivide the
marginal 1-rays. 

K=2 M=6, IN=3, OUT=3, so L=3. 22K-3 = 2 < L so we subdivide the
marginal 2-rays. 

K=3 M=13, IN=6, OUT=7, so L=7. 22K-3 = 8 > L so we stop at this
stage.

Figure 9: Intersection of object and pyray with one marginal edge, showing
adaptive subdivision at levels 0 to 3.

In the case of a single edge, we can easily compute an upper bound on the
depth of subdivision K required for a given . Note that no matter how the edge

intersects the original 0-ray, the maximum value for L is just 2K (the original

square can be seen as a 2Kx2K array of K-rays). So in order for the modified

criterion to hold, it is sufficient to have 2K <= 22K+1 , i.e., K >= log2(1/ )-1.
For example, if =1/16, we will always stop with K=3 (or less, depending on L).
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6.3 Using Hierarchical Data Structures

The use of hierarchical data structures to speed up ray-object intersection is
widely prevalent. Many schemes have been proposed, and at their basis lies
the fact that the intersection of a ray and a bounding volume is easy to
compute. A natural question that arises is how can these schemes be extended
to pyrays.

Pyrays can use such data structures very easily. Our technique for splitting
pyrays adapts ideally as follows: Consider a pyray (or a sub-pyray) and a
bounding volume: It either misses the bounding volume completely, or the
entire pyray is within the bounding volume, or the pyray is marginal to the
bounding volume.

Clearly, the first two cases can be handled in a straightforward manner. In the
third case, the pyray splits in the usual manner, and we consider each
sub-pyray separately. Splitting can continue recursively until we either reach
MAX (maximal level of splitting), or our stopping criterion is satisfied. At the
lowest level, the pyray is sampled by a single ray in the usual manner.

We have not implemented the interaction of pyrays and hierarchical bounding
volumes, but the implementation is the same as the regular interaction of a
pyray and a box or parallelpiped or sphere.

6.4 Other Speed-up Methods

The entire sampling process may be sped up by initially sampling pixels in
clusters, such as 2x2, 3x3, or 4x4. If such a "fat" pyray is marginal, we just split
it up, and pass the hit list to its sub-pyrays. Note that if the cluster size is not a
power of 2 then splitting has to be done differently. If the fat pyray is not
marginal, we can use this value for each of its interior pixels, achieving a big
saving in processing time. The bigger the cluster, the higher the potential
savings, but the likelihood of image banding is higher. This idea is simply a way
of using a lower resolution base.

Another efficiency consideration concerns shadow pyrays: when the light
source is a simple rectangle and the shadow pyray is in proximity to only one
edge or only one sphere (or some other simple primitive), we can avoid the
subdivision process and calculate the fraction of the pyray that remains
unobscured. This is similar to the approach of cone tracing. However, in other
cases, the subdivision is necessary for calculating a good approximation to the
correct shadow.

7. Results and Discussion

Our technique (ASOS) was implemented on a Silicon Graphics Onyx with a 150
MHz R4400 processor and all images were rendered at a resolution of
1000x675. We have implemented our scheme on polygonal objects, spheres,
cylinders, and cones. The exact treatment of the pyray-object intersections is
detailed in [15,16]. For other curved surfaces, one would have to provide
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routines for detecting the proximity of a pyray to the boundary, intersection
detection of a ray, and calculation of the normal at any point on the surface.

As for light sources, we have implemented point light sources, linear lights,
spherical lights, and distributed lights from rectangles and arbitrary polygons.
For shadows, we have done penumbrae, and have also implemented
antialiasing of point and distributed sources. The antialiasing of distributed
sources was done by the extended shadow pyray method (moving the source of
the shadow polygon back so that the shadow pyray intersects the patch defined
on the surface by the original pyray).

We have also implemented sharp and fuzzy reflections, including dependence
of the fuzziness on the viewing angle. All reflections from curved surfaces
(sharp and blurred) were implemented using the simple tangent-plane method,
which proved sufficient for our images.

We have chosen to compare ASOS against stochastic sampling because the
images are comparable in quality. We have not used the adaptive techniques
mentioned in subsection 2.5, since the adaptiveness is image-driven, with the
same inherent problems as adaptive ray tracing (see subsection 2.3).

7.1 Simple Images

Figure 10 was rendered with stochastic sampling, with 16 rays per pixel. The
image took 73.70 minutes to render, and as can be seen, the penumbra from
the desk is quite splotchy. A comparable image with ASOS (MAX=2,  =1/8)
took only 23.65 minutes.

Figure 11 was rendered with ASOS (MAX=3, =1/8) (i.e. subdividing up to a
maximum of 64). This image is obviously a big improvement over the previous
one, and the time was only slightly more than ASOS required for the previous
image: 27.71 minutes. A comparable image with stochastic sampling casting
64 rays per pixel and took 383.10 minutes.

At this point it is necessary to explain why such a big improvement required so
little extra time. The reason is due to our technique of passing the polygon hit
list from a (sub-)pyray to its sub-pyrays. Most of the time is spent on
determining the hit list for the initial pyray, so splitting to a deeper level is
relatively cheap.

Finally, Figure 12 was rendered with ASOS (MAX=4, =1/8). The penumbra
from the desk looks perfect, and the time to render the image was 35.98
minutes. No attempt was made to render a comparable image with stochastic
sampling. Figure 13 is a 4x4 blowup of a section of Figures 11 and 12 showing
the improved penumbra.

7.2 House with Texture Maps

The images here consist of a house made up of 2,770 polygons. A spherical
light source provides the light and bounding boxes were used around most of
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the objects to speed up the intersection calculations. The porch is rendered
with a procedural texture map, and the ground consists of a triangular mesh
made up of 1,139 triangles with a procedural sand bump map.

Antialiasing was achieved as described in subsection 3.2. Both images were
rendered with MAX=2 (i.e., the smallest sub-pyray was 1/16th of a pyray) and 
=0, forcing all marginal sub-pyrays to subdivide to level 2.

Figure 14 shows the image rendered with TR=2, i.e., non-marginal pyrays
subdivided into 2x2, so the texture map was sampled 4 times by each pixel.
The time for this image was 158.01 minutes, and the image quality is
reasonably good for its size and resolution.

Figure 15 shows the same image rendered with TR=4, meaning that the
texture map was sampled 16 times per pixel. This image took 353.55 minutes,
and the image quality is very high. A comparable image by stochastic sampling
was obtained by sampling each pixel 16 times, requiring 539.42 min., or
approximately 50% more time. The main reason that the time savings here are
not as dramatic is that when a non-marginal ray hits a textured surface, it not
only samples the texture 16 times but also sends 16 shadow rays to the light
source.

The insets of the figures are a 4x4 blow-up of the extreme right corner of the
gazebo. They show in detail that a higher TR improves the antialiasing of both
the texture map and the shadows.

7.3 House with Reflections

The same house as above is shown here set on a reflecting plane without any
texture maps or shadows. In the first two images the plane is a perfect
reflector, and in the other images the plane creates blurred reflections with the
fuzziness depending on the viewing angle.

Figure 16 shows the house rendered with ASOS (MAX=2, =1/8). The time for
this image was 49.19 minutes, and the image quality is reasonably good. A
comparable image with stochastic sampling, with 16 samples per pixel took
308.26 minutes. These timings indicate that even for images with many
polygons, ASOS can achieve a dramatic time savings over stochastic sampling.

Figure 17 shows the same image rendered with ASOS (MAX=3, =1/8). The
improvement in this image is noticeable on the screen, but it is slight. When
portions of both images are blown up, there is quite a noticeable difference.
The time for this image was 92.25 minutes, and a comparable image with
stochastic sampling would have required 64 rays per pixel was not attempted.

Figures 18 and 19 show the effect of blurred reflections, with the amount of
blur depending on the viewing angle. For both images, DFRMIN=0.05,
DFRMAX=1.0, =1/8 and MAX=3. The parameter N was 32 and 64
respectively, showing the effect of N on the rate at which the blur changes with
the viewing angle. As N increases, the range of viewing angles at which the
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blur is noticeable also increases. Figure 18 took 182.83 minutes and Figure 19
took 225.90 minutes.

7.4 Images with Secondary Reflections

Figure 20 shows the office scene with the camera moved closer to the desk and
the desk made metallic. This images was rendered with ASOS (MAX=3, =1/8)
in 28.74 minutes and shows a blurred reflection of the whiteboard on the top of
the desk. Also note reflection of the light off of the whiteboard as well. Figure
21 shows a sphere, cylinder and cone sitting on a non-reflective plane. This
image was rendered with ASOS (MAX=3, =1/8) in 2.48 minutes while allowing
6 reflective bounces.

7.5 Summary of Results

Table 2 summarizes our qualitative and quantitative results, using ASOS and
stochastic sampling.

Figure Image Quality ASOS Time Stochastic Time

10 Office Poor 23.65 73.70

11 Office Good 27.71 383.10

12 Office Very Good 35.98 n/a

14 House w/texture Good 158.01 n/a

15 House w/texture Very Good 353.55 539.42

16 Reflected House Good 49.19 308.26

17 Reflected House Very Good 92.25 n/a

18 Blurry (N=32) Very Good 182.83 n/a

19 Blurry (N=64) Very Good 225.90 n/a

Table 2: Qualitative and Quantitative Results: ASOS and Stochastic Sampling

Qualitatively, one can summarize these results by saying that ASOS achieves a
speedup by an order of magnitude over stochastic sampling when no texture
mapping is involved. Even with texture maps, stochastic sampling can take
some 50% more time to achieve comparable results.

8. Conclusions

We have introduced a new ray tracing technique for the problems of aliasing,
handling distributed light sources, and generating fuzzy reflections. Both light
sources and regular objects are blurred in the same uniform manner,
producing either specular reflections of light sources, or fuzzy reflections of
regular objects. We have also shown how to antialias shadows from distributed
sources, which is a different problem than just creating soft shadows. Our
method operates in object-space, and can be tuned to any desired accuracy.
Note that our method of producing fuzzy reflections is not based on a physical
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model, and so it requires some tuning for different surfaces.

ASOS (adaptive supersampling in object space) can handle reflections from any
curved surface, and we have implemented reflections - both sharp and fuzzy -
from spheres, cylinders and cones. For other curved surfaces, the user would
have to supply the routines for testing proximity, calculating intersection of a
(line) ray and a surface, and deriving the normal to the surface at a given
point.

The run times of our test images were mainly compared against those of
stochastic ray tracing, since our method can be viewed as producing identical
results to that method. (More efficient stochastic techniques are adaptive in
image-space, and where not used in this research.) Test runs are extremely
favorable to ASOS, and we can even produce better images in a shorter time.
These time savings are mainly due to the fact that we supersample only at
object boundaries, but even when we force ASOS to supersample large areas
(as needed for antialiasing texture maps), we still get a big savings in time due
to our method of passing the object list from a pyray to its sub-pyrays. Thus,
ASOS can also be viewed as a useful acceleration technique.

Our method's ability to capture very small or thin objects makes it extremely
useful for animation, because temporal aliasing can cause small objects to flash
on and off. It is not enough just to detect such objects, it is also important to
get a good approximation to their area, otherwise they may appear to pulsate
with different intensities. The same can be said about small or thin shadows,
and small gaps between objects. With ASOS, we can approximate such areas to
any required precision.

The use of our technique does not preclude the application of other antialiasing
methods. For example, stochastic sampling can be used for transparent
objects. This combination of two techniques can be used to handle certain
aliasing problems such as object intersections in CSG models. Another
antialiasing method calls for sampling each pixel beyond the pixel area; this
can be easily done by casting the original pyrays through a square larger than
a pixel, though we have not studied this approach.

Although we do not solve the global illumination problem, several of the
techniques that do so use ray tracing as an essential step. These methods could
use ASOS to speed up and enhance the ray tracing part. ASOS can also be
combined with regular stochastic sampling to handle the problem of refraction,
for which at present we do not have a solution.

Future research in ASOS can be expected to deal with a variety of problems,
some of which are outlined below:

Refractions: The problem of transparent objects is a difficult one,
particularly when distributed light sources are involved. The difficulty
here is that we cannot aim a simple pyray towards the light source
because of the refraction of light at the boundaries of the medium.
Acceleration: The literature of ray tracing abounds with various
acceleration techniques. Not all of them are suitable for use with
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pyramidal rays, and studying the techniques that can be applied to ASOS
should be an interesting research topic. Another topic that comes under
acceleration is the handling of extremely complex scenes involving billions
of polygons [12,13].
Rough environments: Many naturally occurring materials exhibit the
property that light is blurred in a manner that depends not only on the
viewing angle and wavelength, but also in a random manner. This effect
can be modeled by two parameters. One is the surface normal, which can
can be varied according to some distribution function, and another is the
defocusing ratio, which can also be varied in a similar manner.
Other blurring effects: It is quite easy to extend our defocusing method to
handle other blurring effects. For example, depth-of-field effects can easily
be modeled by simply defocusing the original pyray in a manner
dependent on the depth of the object. Motion blur can also be done, but
slightly differently: The pyray's source stays at the viewpoint, but now the
pixel is distorted by elongating it in the direction of the object's motion;
the amount of distortion should be a function of the depth of the object
and its speed.
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Color Plates

Figure 10: Stochastic sampling, 16
rays per pixel; quality: poor; time:

Figure 11: ASOS (MAX=3, =1/8);
quality: good; time: 27.71 min.; time
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73.70 min.; time for similar image
using ASOS: 23.65 min.

for similar image with stochastic
sampling: 383.10 min.

Figure 12: ASOS (MAX=4, =1/8);
quality: very good; time: 35.98 min.

Figure 13: 4x4 blowup of previous
images, showing difference in

penumbrae.

Figure 14: House with texture
mapping rendered with ASOS

(MAX=2, =0) and texture sampled 4
times per pixel; quality: good; time:
158.01 min. Some shadow aliasing

(enlarged) is noticeable.

Figure 15: Same as last, but texture
sampled 16 times per pixel. Quality:

very good; Time: 353.55 min. Time for
similar image with stochastic

sampling: 539.42 min. Shadow aliasing
is improved.

Figure 16: House on reflecting plane
rendered with ASOS (MAX=2, =1/8);
quality: good; time: 49.19 min. Time
for similar image using stochastic

sampling: 308.26 min.

Figure 17: Same as last, but MAX=3.
Quality: very good; time: 92.25.
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Figure 18: Blurred reflections using
ASOS (MAX=3, =1/8, DFRMIN=0.05,

DFRMAX=1.0, N=32); time: 182.83
min.

Figure 19: Same as last, but with
N=64, showing the effect of N on the
blurred portions. Time: 225.90 min.

Figure 20: Blurred reflections from
one and two bounces.

Figure 21: Blurred reflections from
curved objects.
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